
BranchGauge: Modeling andQuantifying Side-Channel Leakage
in Randomization-Based Secure Branch Predictors

Quancheng Wang
Wuhan University

School of Cyber Science and Engineering
Wuhan, China

wangquancheng@whu.edu.cn

Ming Tang
Wuhan University

School of Cyber Science and Engineering
Wuhan, China

m.tang@whu.edu.cn

Ke Xu
Wuhan University

School of Cyber Science and Engineering
Wuhan, China

kexuwhu@whu.edu.cn

Han Wang
Wuhan University

School of Cyber Science and Engineering
Wuhan, China

han.wang@whu.edu.cn

Abstract
The inherent sharing characteristic of branch predictors makes
modern processors vulnerable to microarchitectural side-channel
attacks. Among proposed mitigations, randomization-based coun-
termeasures stand out for their practical potential, offering lower
performance overhead compared to flushing or partitioning tech-
niques. However, these randomized approaches often fail to guar-
antee absolute security, and existing evaluation methods cannot
accurately quantify leakage in such designs. This underscores the
urgent need for a formal methodology to systematically model
and measure side-channel leakage in randomization-based secure
branch predictors. In this paper, we propose a leakage quantification
framework to measure side-channel leakage in these randomized
countermeasures at the microarchitecture level. Our methodol-
ogy incorporates detailed modeling of the operational principles
and indexing/content randomization mechanisms of PHT and BTB
components, effectively capturing timing characteristics relevant
to microarchitectural attacks. Based on this, we define attack strate-
gies and secret spaces that breach security boundaries, facilitating
seamless integration of microarchitectural attacks with branch pre-
dictor models. We then present leakage evaluation metrics and
assess the security of existing randomized defenses under various
attack strategies and secret spaces, demonstrating our framework’s
effectiveness in quantifying side-channel leakage. In particular, Our
experiments reveal that reuse-based PHT attacks, prune-based BTB
attacks and occupancy-based attacks remain significant threats,
highlighting the need for stronger countermeasures.

CCS Concepts
• Security and privacy→ Side-channel analysis and counter-
measures; • Hardware→ Simulation and emulation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’25, Hanoi, Vietnam
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1410-8/25/08
https://doi.org/10.1145/3708821.3736198

Keywords
Side-Channel Attacks, Branch Predictor, Leakage Quantification

ACM Reference Format:
Quancheng Wang, Ming Tang, Ke Xu, and Han Wang. 2025. BranchGauge:
Modeling and Quantifying Side-Channel Leakage in Randomization-Based
Secure Branch Predictors. InACMAsia Conference on Computer and Commu-
nications Security (ASIA CCS ’25), August 25–29, 2025, Hanoi, Vietnam. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3708821.3736198

1 Introduction
The design philosophy of modern processors emphasizes achieving
faster execution speeds and greater efficiency, with branch predic-
tors playing a critical role in addressing control hazards. However,
the sharing nature of branch predictors at the microarchitecture
level exposes modern processors to various microarchitectural side-
channel attacks. These attacks enable malicious attackers to exploit
timing differences between correct and incorrect predictions [1–
3, 6, 7, 13, 14, 17] or microarchitectural state changes induced by
speculative execution [5, 19–21, 23, 27, 28, 37], thereby compromis-
ing sensitive data from other security domains.

To address the significant security risks posed by branch pre-
dictors, researchers have proposed various secure speculation de-
signs [4, 18, 29, 40] and secure branch predictor designs [10, 22,
42–44]. Among them, randomization-based approaches such as
STBPU [42] and HyBP [44] stand out as more promising compared
to flush-based [9, 34] and partition-based [33] solutions. By intro-
ducing randomness to the indexing and content of branch predic-
tors, randomization-based designs make attacks significantly more
challenging, effectively reducing leakage risks while maintaining
relatively low performance overhead.

Although randomization-based schemes [10, 22, 42–44] reason-
ably claim to enhance the security of computer systems, their ef-
fectiveness is not absolute. On the one hand, shared states between
attacker and victim threads still exist, indicating that these schemes
cannot ensure comprehensive security [12]. On the other hand,
existing formal verification frameworks and leakage quantification
methods still fall short of providing a comprehensive assessment of
secure branch predictor designs. For instance, CaSA [8], Metior [12],
CacheFX [15], and the framework proposed by Peters et al. [24] pri-
marily target secure cache designs and cache replacement policies,

https://orcid.org/0000-0002-0313-1853
https://orcid.org/0000-0003-2218-0164
https://orcid.org/0000-0002-3454-8993
https://orcid.org/0009-0001-0360-8236
https://doi.org/10.1145/3708821.3736198
https://doi.org/10.1145/3708821.3736198

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

lacking a holistic evaluation of secure branch predictor designs.
Furthermore, while Wang et al. [35, 36] analyze the security of 8 se-
cure branch predictor designs using a symbolic modeling approach,
this method is overly abstract and simplistic, making it inadequate
for accurately quantifying the side-channel leakage.

To address the limitations of existing formal modeling and side-
channel security evaluations for randomized secure branch pre-
dictor designs, we propose a novel leakage quantification frame-
work. By modeling the operational principles of branch predictors
and the side-channel attack methodologies targeting them, this
framework enables comprehensive quantitative security analysis of
randomization-based secure branch predictor designs in the context
of both timing and speculative attacks.

We first analyze the fundamental working principles of random-
ized secure branch predictors, focusing on two critical components:
Pattern History Table (PHT), which handles conditional branch
prediction, and Branch Target Buffer (BTB), responsible for predict-
ing branch target addresses. Based on the characteristics of these
randomization-based designs, we propose a branch predictor model
that incorporates the index randomization function (𝐼𝑅𝐹) and the
content randomization function (𝐶𝑅𝐹). Moreover, we introduce a
timing observation model to analyze the execution time of branch
instructions, capturing states relevant to timing and speculative at-
tacks. In addition, we show how existing randomized secure branch
predictor designs can be integrated into this framework, facilitating
further side-channel leakage evaluations of these designs.

Afterward, we systematically formalize timing and speculative
attacks targeting PHT entries, BTB entries, and BTB sets, each
exploiting the side-channel security vulnerabilities of branch pre-
dictors from different perspectives. These attack strategies include
reuse-based attacks targeting specific PHT and BTB entries, prune-
based attacks aimed at evicting BTB sets, and occupancy-based
attacks that exploit the occupancy state of branch predictors. We
then define the secret spaces of the victim’s branch instructions to
align real-world attack scenarios with our attack model, thereby
enabling a comprehensive evaluation of side-channel leakage in
secure branch predictor designs.

Finally, we quantitatively evaluate the side-channel leakage of
existing randomized branch predictor designs using our proposed
framework. We define several metrics, including the number of
branch accesses, the probability of branch collisions between the
attacker and the victim, and maximal leakage that can be observed.
By comparing security guarantees across different attack strategies
and secret spaces, we demonstrate the practicality and effective-
ness of our methodology in quantifying side-channel leakage in
randomization-based secure branch predictors.

Our experiments show that encryption schemes, such as Noisy-
XOR-BP [43], STBPU [42] and HyBP [44], provide robust protection
against reuse-based BTB attacks, thereby ensuring a high level of
security in practical deployments. However, even with encrypted
(e.g., Noisy-XOR-BP [43]) and wider (e.g., BSUP [22]) saturating
counters, the security guarantees of existing randomized designs
against PHT attacks remain insufficient. Additionally, our results
highlight that prune-based and occupancy-based attacks continue
to pose substantial threats, underscoring the need for more effective
countermeasures. Nevertheless, we believe that our framework can
be extended to serve as a valuable tool for future secure designs.

The main contributions of this paper are as follows:
• We propose a modeling methodology for evaluating side-
channel leakage in randomization-based secure branch pre-
dictors at the microarchitecture level. Our approach encom-
passes the operational principles of branch predictors, incor-
porates indexing and content randomization mechanisms,
and captures the execution time of branch instructions, with
a focus on timing and speculative attacks.
• We formally describe the execution processes of microarchi-
tectural attacks targeting PHT entries, BTB entries, and BTB
sets. By defining reuse-based, prune-based, and occupancy-
based attack strategies, alongwith their corresponding secret
spaces, we can effectively evaluate the side-channel security
properties within our framework.
• We define leakage evaluation metrics and assess the security
properties of existing randomization-based secure branch
predictor designs across various attack strategies and victim
secret spaces. Our experiments demonstrate the effective-
ness of our framework in quantifying side-channel leakage,
underscoring the necessity for stronger countermeasures
against microarchitectural attacks.

The research artifact of our work, including the source code and
reference experimental results, is available at https://github.com/
iamywang/branch-gauge.

2 Background and Related Work
In this section, we provide an overview of microarchitectural side-
channel attacks targeting branch predictors, existing secure de-
signs addressing branch predictor vulnerabilities, and modeling
techniques for analyzing microarchitecture security.

2.1 Side-Channel Attacks on Branch Predictors
Depending on the attacker’s strategy and the leakage model, mi-
croarchitectural attacks targeting branch predictors can be catego-
rized into two main types: timing attacks and speculative attacks.
Timing attacks represent a passive approach to information leakage,
where the attacker infers sensitive data, such as encryption keys [1–
3, 6, 7, 14, 17], KASLR offsets [13], or other confidential information,
by analyzing the execution timing of the victim’s branches.

Speculative attacks, exemplified by Spectre [20] and its numerous
variants [5, 21, 23, 37], are an active form of unauthorized access.
In these attacks, the attacker manipulates the branch predictor’s
state to influence the victim’s control flow, inducing unauthorized
speculative execution along incorrect paths. These exploits can un-
dermine critical security foundations in modern computer systems,
including network attack surfaces [30], memory isolation between
processes [39], Trusted Execution Environments (TEEs) [11], and
memory safety features such as Pointer Authentication (PAC) [28]
and Memory Tagging Extension (MTE) [19].

2.2 Existing Secure Branch Prediction Designs
Secure branch predictor designs aim to address both timing and
speculative attacks by introducing some hardware modifications
to branch predictors. Flush-based designs, such as MI6 [9] and
BRB [34], refresh branch predictor states during context switches or
transitions between security domains. Partition-based designs focus

https://github.com/iamywang/branch-gauge
https://github.com/iamywang/branch-gauge

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

on hardware-level isolation of branch predictors to mitigate side-
channel risks. For example, Lock-based BTB design [33] allocates
dedicated resources for different security domains. These two types
of defenses often incur significant performance overhead due to
reduced branch predictor capacity.

Randomization-based secure designs employ techniques such as
hardware-level non-deterministic mappings of branch instructions
to predictor entries or encryption/randomization of branch predic-
tor contents, such as BSUP [22], Noisy-XOR-BP [43], LS-BP [10],
HyBP [44], and STBPU [42]. Although these designs demand signif-
icant hardware modifications, they effectively reduce the attacker’s
success probability while maintaining relatively low performance
overhead. However, modeling and quantifying the side-channel
leakage in these schemes remains an interesting research challenge.

2.3 Microarchitectural Security Evaluation
Formal verification abstracts side-channel security properties and
program behaviors, leveraging reasoning and proof-based methods
to ensure security guarantees. For example, Yang et al. [41] intro-
duce Pensieve, a model checking framework for evaluating the ef-
fectiveness of hardware defenses against speculative attacks. Wang
et al. [35, 36] model branch predictor components and operations
for exploring attack patterns and security verification, providing
a comprehensive security analysis of 8 secure branch predictor
implementations against both timing and speculative attacks.

In the context of quantifying microarchitectural side-channel
leakage, researchers have primarily focused on formal verification
and quantification related to cache side-channels. For instance, the
Prime+Prune+Probe attack method [25] and its corresponding secu-
rity evaluation framework demonstrate that the interference intro-
duced by existing randomization strategies is not as significant as ex-
pected. Techniques such as CaSA [8], Metior [12], and CacheFX [15]
primarily target leakage quantification for secure cache designs.
Similarly, the framework proposed by Peters et al. [24] focuses on
quantifying leakage in cache replacement policies. However, these
approaches do not provide a comprehensive security evaluation for
randomization-based secure branch predictor designs.

3 Modeling the Structure of Security-Oriented
Branch Predictors

In this section, we begin by modeling two widely used branch
predictor components in modern processors that are susceptible
to side-channel vulnerabilities: Pattern History Table (PHT) and
Branch Target Buffer (BTB). We also describe the types of instruc-
tions considered in our branch predictor model and explain the
replacement strategies employed for the BTB. Subsequently, we
introduce a timing observation model to characterize the execution
time of branch instructions, capturing both the hit and miss states
relevant to timing attacks and the misprediction critical for spec-
ulative attacks. Finally, we demonstrate how existing randomized
secure branch predictors can be implemented in this framework.

3.1 Threat Model
Microarchitectural side-channel attacks on branch predictors in-
volve an attacker and a victim, both capable of executing branch
instructions that alter the branch predictor’s state. These programs

may run either on the same logical processor or on separate logical
processors within the same physical processor. In our threat model,
the attacker and victim can operate at same privilege levels (e.g.,
user mode) or different ones (e.g., user mode versus kernel mode).

The victim is presumed to execute specific branch instructions
tied to sensitive information, while the attacker may influence the
branch predictor by executing arbitrary branch instructions. The di-
rection of a branch depends on the secret data the attacker seeks to
deduce. For instance, in the RSA encryption function implemented
in the OpenSSL cryptographic library, the value of a key bit deter-
mines whether the branch is taken or not. The execution timing of
these branch instructions, affected by branch predictor operations,
can inadvertently reveal details about the encryption key.

Our threat model also assumes the attacker possesses some un-
derstanding of the victim’s implementation, such as the crypto-
graphic algorithm and the positions of branch instructions asso-
ciated with the secret, but lacks knowledge of the actual secret
data. Moreover, the attacker is assumed to be familiar with the
state machine logic of the branch predictor components. While
the attacker cannot directly access the internal state of the branch
predictor, they can infer its state by measuring the execution time
of their own or the victim’s operations. By determining whether
the execution is fast or slow, the attacker can deduce the branch
predictor’s state and infer the victim’s secret data.

3.2 Defining Components and the Workflow
The development of a security-oriented branch predictor model
aims to assess the security of emerging branch predictor designs and
evaluate the applicability and complexity of existing side-channel
attack methods against these designs. To achieve this, we introduce
a branch predictor model consisting of two fundamental compo-
nents: Pattern History Table (PHT) and Branch Target Buffer (BTB).
This model takes a sequence of branch instructions as input and
outputs the branch direction or target address for each branch.

cond

ind

IRFi

idx 0

...

idx x ▲

...

...

set 0

...

set y ▲

...

...

IRFj

S Ka

CRFi

Kb S

BTB

PHT

S Kc

CRFj

Kd S

Saturating
Counter

Target
Address

Branch Target

Figure 1: The workflow of our branch predictor model.

PHT Model. PHT is used to predict the direction of conditional
branches (𝑐𝑜𝑛𝑑). Each PHT entry is represented by a saturating
counter, with its most significant bit (MSB) determining whether
the branch is predicted as “taken” or “not taken”.

As shown in the upper portion of the workflow in Figure 1,
our PHT model integrates two randomization functions: the in-
dex randomization function (𝐼𝑅𝐹) and the content randomization
function (𝐶𝑅𝐹). These functions effectively reduce the attacker’s
success probability by introducing randomness. Both 𝐼𝑅𝐹 and 𝐶𝑅𝐹
use simplified inputs, including the branch instruction address or

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

the saturating counter content, combined with a randomization key
𝐾 (e.g., process PID, XOR mask, or cryptographic key). To further
enhance security, distinct keys are assigned to different security
domains 𝑆 , and periodic key updates are employed.

PHT Lookup. During the prediction phase of a conditional
branch 𝑐𝑜𝑛𝑑 , the PHT determines the corresponding index by ap-
plying the 𝐼𝑅𝐹 function to the branch instruction’s address. Using
this index, it retrieves the content of the saturating counter from the
PHT. The retrieved value is then de-randomized via the 𝐶𝑅𝐹 func-
tion to produce the final prediction. If theMSB of the de-randomized
saturating counter is 1, the branch is predicted as “taken”; otherwise,
it is predicted as “not taken”.

PHT Update. Once a conditional branch instruction 𝑐𝑜𝑛𝑑 is ex-
ecuted, the PHT updates the saturating counter based on the actual
branch outcome. If the branch is “taken”, the saturating counter is
incremented by 1; otherwise, it is decremented by 1. To further en-
hance randomness, the updated counter value is processed through
the 𝐶𝑅𝐹 function before being written back to the PHT.

BTBModel. BTB predicts the target address of indirect branches
(𝑖𝑛𝑑) and is organized similarly to a set-associative cache. Each BTB
entry contains several fields, including a valid bit, a tag, a target
address, and replacement metadata.

Similarly, as depicted in the lower half of theworkflow in Figure 1,
our BTB model also incorporates two randomization mechanisms:
the index randomization function (𝐼𝑅𝐹) and the content random-
ization function (𝐶𝑅𝐹). Unlike the PHT model, these functions are
tailored to handle branch address-to-set mapping and entry content
randomization, respectively. Additional inputs for the randomiza-
tion process are abstracted using a unified key 𝐾 (e.g., process PID,
XOR mask, or cryptographic key), which varies across security
domains 𝑆 and is periodically updated for security purposes.

BTB Lookup.When an indirect branch instruction 𝑖𝑛𝑑 is exe-
cuted, the BTB computes the set index by applying the 𝐼𝑅𝐹 function
to the branch instruction’s address. Within the corresponding set,
the BTB searches for a matching entry based on a tag comparison.
If a match is found, the target address is de-randomized using the
𝐶𝑅𝐹 function to generate the final prediction.

BTB Update. After executing an indirect branch instruction 𝑖𝑛𝑑 ,
the BTB updates the relevant entry with the actual target address.
For added security, the target address is first randomized using the
𝐶𝑅𝐹 function before being stored in the BTB. If no matching entry
is found during the lookup phase, the BTB employs a replacement
policy to allocate space for the new target address.

LRU Replacement. Replacement policies dictate which entry
to evict when the BTB set is full and a new target address must
be stored. In our methodology, we evaluate the LRU replacement
policy, which prioritizes entries based on their access history. When
a replacement is needed, the entry with the highest LRU metadata
value—indicating the least recent access—is evicted. Each BTB en-
try maintains metadata tracking its LRU status. When an entry is
accessed, the LRU metadata for all entries in the corresponding
candidate set is updated to reflect the latest branch order.

3.3 Constructing Side-Channel Observations
Building on the characterization of the PHT and BTB components
in our branch predictor model, we define a timing observation

model, as illustrated in Figure 2. This model captures the timing-
related states of the branch predictor and evaluates the consistency
between predicted and actual outcomes.

Observation Model

Check

Direction
(PHT)

Timing

Target
(BTB)

hitvalid

mispredict

invalid miss

miss

valid

mispredict miss

hit

Branch
Predictor

Unit

BTB

PHT

Branch

Prediction

Figure 2: The side-channel timing observation in our model.

For the PHT branch predictor, if the prediction matches the ac-
tual direction (e.g., both “taken” or both “not taken”), the execution
time is classified as a ℎ𝑖𝑡 , and the prediction state is labeled as 𝑣𝑎𝑙𝑖𝑑 .
If the prediction differs (e.g., one “taken” and one “not taken”), the
execution time is classified as a𝑚𝑖𝑠𝑠 , and the prediction state is
labeled as𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 . For the BTB branch predictor, if the predicted
branch target matches the actual target, the execution time is clas-
sified as a ℎ𝑖𝑡 , and the prediction state is labeled as 𝑣𝑎𝑙𝑖𝑑 . If the
predicted target differs, the execution time is classified as a𝑚𝑖𝑠𝑠 ,
and the prediction state is labeled as𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 . If no matching is
found in the target BTB set, the execution time is still classified as
a𝑚𝑖𝑠𝑠 , but the prediction state is labeled as 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 .

This observation model enables the analysis of timing and spec-
ulative attacks targeting branch predictors. In timing attacks, the
attacker aims to distinguish timing variations between two branch
execution paths. This can be achieved by observing the states
generated by the model, such as differences between (ℎ𝑖𝑡, 𝑣𝑎𝑙𝑖𝑑)
and (𝑚𝑖𝑠𝑠,𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡/𝑖𝑛𝑣𝑎𝑙𝑖𝑑). In speculative attacks, the attacker
seeks to manipulate the branch predictor’s state to influence the
victim’s control flow. This is reflected in the state transitions be-
tween (ℎ𝑖𝑡, 𝑣𝑎𝑙𝑖𝑑) and (𝑚𝑖𝑠𝑠,𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡) produced by the model.
Furthermore, the model captures the execution states and observa-
tion sequences of multiple branch instructions, enabling detailed
analysis of various attack strategies and secure designs.

3.4 Implementing Existing Randomized Designs
After establishing the branch predictor workflow model and timing
observation model, we integrate existing randomized secure branch
predictor designs proposed by academic researchers into this frame-
work. This instantiation process demonstrates the extensibility of
our methodology for evaluating specific secure designs.

BSUP [22]. This security design generates independent private
keys for each security domain, utilizes an XOR algorithm to random-
ize the branch predictor indices, and employs the LLBC encryption
algorithm proposed in the CEASER cache [26] to randomize the
contents of PHT entries and the target addresses of BTB entries. In
our instantiation, we represent 𝑆 and 𝐾 as the attacker/victim and
their corresponding randomly generated private keys, respectively,
and implement the 𝐼𝑅𝐹 and 𝐶𝑅𝐹 functions using XOR and LLBC

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

encryption algorithms. Notably, the 𝐶𝑅𝐹 function is applied exclu-
sively to randomize the target addresses of PHT and BTB entries,
thereby simulating the working principle of BSUP.

XOR-BP [43]. This design also generates independent private
keys for attackers and victims and uses an XOR algorithm to ran-
domize the contents of branch predictor entries, including PHT
entries as well as the tags and target addresses of BTB entries. Dur-
ing instantiation, we associate 𝑆 and 𝐾 with the security domain
and the corresponding private keys, respectively, and apply the
𝐶𝑅𝐹 function to the PHT entries as well as the tags and target
addresses of BTB entries to simulate the XOR-BP branch predictor.

Noisy-XOR-BP [43]. Building on XOR-BP, this design intro-
duces a noise mask for branch predictor indices, which enhances
the randomness observed by attackers by XORing branch addresses
with an encryption scheme. During instantiation, we extend the
𝐼𝑅𝐹 function as an XOR algorithm to encrypt the indices of PHT
and BTB entries, thereby simulating the Noisy-XOR-BP’s workflow.

LS-BP [10]. This design differs from the previous approaches by
randomizing only the branch predictor indiceswithout randomizing
the contents. The core idea is to XOR the branch addresses with
the process PID and then encrypt the results using PUF, achieving
index randomization. In our instantiation, we set 𝑆 as the process
PID, define the 𝐼𝑅𝐹 function as a combination of XOR and PUF
encryption algorithms, and use the entire branch address as the tag
for BTB entries to accurately simulate the LS-BP method.

STBPU [42]. This design generates a random number for each
security domain and splits it into two parts for index randomization
and content randomization. Index randomization is achieved by
concatenating branch addresses with private keys and applying
hash compression, while content randomization is implemented us-
ing an XOR encryption algorithm. In our instantiation, we associate
𝑆 and𝐾 with the security domain and its corresponding private key,
respectively. We implement the 𝐼𝑅𝐹 function as a hash compression
algorithm to randomize the indices of PHT entries as well as the
indices and tags of BTB entries and use the 𝐶𝑅𝐹 function as an
XOR algorithm to randomize the contents of PHT entries and the
target addresses of BTB entries, simulating the STBPU approach.

HyBP [44]. This design mitigates branch predictor side-channel
attacks by partitioning and isolating small tables and randomizing
large tables. Since our model focuses only on randomization de-
signs, we model only the PHT and the last-level BTB. Specifically,
we associate 𝑆 and 𝐾 with the security domain and the correspond-
ing private key, implement the 𝐼𝑅𝐹 function using a lightweight
QARMA encryption algorithm to randomize the indices of PHT as
well as the indices and tags of BTB, and apply the XOR algorithm
in the 𝐶𝑅𝐹 function to randomize the contents of PHT entries and
the target addresses of BTB entries, simulating the HyBP scheme.

4 Fomulating Microarchitectural Side-Channel
Attacks on Branch Predictors

Based on our threat model and the randomized branch predictor
model, attackers can employ five poisoning methods to compromise
the confidentiality of the victim’s execution environment. These
approaches include:

❶: Speculative attacks targeting specific PHT entries;
❷: Speculative attacks targeting specific BTB entries;

❸: Timing attacks targeting specific PHT entries;
❹: Timing attacks targeting specific BTB entries;
❺: Timing attacks targeting specific BTB sets.
In this section, we formally define these attack strategies and

categorize them into reuse-based attacks, prune-based attacks, and
occupancy-based attacks. Additionally, we examine typical secret
spaces related to cryptographic and system security, enabling accu-
rate simulation and characterization of real-world attack scenarios.

Since this paper focuses on the design of secure branch pre-
dictors, we assume the existence of covert channels by default in
speculative attacks and use Flush+Reload—the most typical and
representative covert channel—as the primary example in our at-
tack algorithm. We also assume the use of the simplest and most
commonly adopted binary (0-1) encoding for covert channels.

4.1 Reuse-Based Attacks
Figure 3 presents a high-level overview of the attack processes for
reuse-based attacks, encompassing both timing and speculative
variants. In line with our assumptions, we use the cache covert
channel as the example for speculative attacks.

Step 1: Mispredict
(Timing Leakage) Step 2: Execute Step 3: Observe

SLOW
BP

BP

BP
FAST

Step 1: Mispredict
(Speculative Leakage) Step 2: Execute Step 3: Observe

SLOW

FAST

BP

Cache

BP

Cache

BP

Cache

Figure 3: High-level overview of reuse-based attacks.

In Spectre V1-like attacks (❶) and PHT timing attacks (❸), the at-
tacker exploits specific PHT entries associated with a victim branch
that accesses secret data. To achieve this, the attacker crafts a con-
ditional branch instruction whose address, after being transformed
by the 𝐼𝑅𝐹 , maps to the same PHT entry as the victim’s branch
instruction. Then, the attacker should ensure that the poisoned
PHT entry results in a 𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 state for the victim’s branch
instruction, following 𝐶𝑅𝐹 decoding within the victim’s security
domain. Such a misprediction induces timing differences for timing
attacks or enables covert channel encoding (e.g., cache channels)
for speculative attacks.

The attacker can iteratively evaluate a set of branch instructions
to identify one that triggers the expected collision. Let {𝐴𝑇 , 𝐴𝑆 } ∈ A
represent the timing (❶) and speculative (❸) attack types, respec-
tively, and let 𝑛 denote the number of bits in the saturating counter.
Define {𝐷𝐴, 𝐷𝑉 } ∈ D as the security domains of the attacker and
victim, and {𝑇𝐻 ,𝑇𝑀 } ∈ T as the timing observations corresponding
to the 𝑣𝑎𝑙𝑖𝑑 and𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 states, respectively. Let {𝑣𝑐𝑜𝑛𝑑 } ∈ V de-
note the victim branch, {𝑔0, 𝑔1, . . . } ∈ G the set of attacker’s branch
addresses, 𝑐𝑐 the covert channel address (used only in speculative
attacks), and 𝑎𝑑𝑑𝑟 the output branch that causes the PHT collision.
The detailed steps for this attack are provided in Algorithm 1.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

In Spectre V2-like attacks (❷) and BTB timing attacks (❹), the
attacker targets specific BTB entries. The attacker should construct
an indirect branch instruction whose address, under a different 𝐼𝑅𝐹
mapping, aligns with the same BTB entry as the victim’s branch.
The goal is to poison the BTB entry so that the victim branch
mispredicts and jumps to a malicious target address. This target
address, after undergoing 𝐶𝑅𝐹 decoding in the victim’s execution
environment, is carefully chosen to induce a𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 state for
the victim branch in both attack types and meet the conditions
for a covert channel (e.g., a valid address for cache or TLB-based
channels) in speculative attacks.

The attacker can perform random tests with branch instructions
to identify one that reliably triggers mispredictions for both types
of attacks. For speculative attacks, the attacker must then itera-
tively enumerate and find a specific target address that induces the
desired covert channel encoding (an additional step unnecessary
in timing attacks). The detailed steps for this process are outlined
in Algorithm 2. In this context, {𝐴𝑇 , 𝐴𝑆 } ∈ A represent the tim-
ing (❷) and speculative (❹) attack types, respectively. Similarly,
{𝐷𝐴, 𝐷𝑉 } ∈ D denote the security domains of the attacker and
victim, while {𝑇𝐻 ,𝑇𝑀 } ∈ T refer to the timing observations un-
der the 𝑣𝑎𝑙𝑖𝑑 and𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡/𝑖𝑛𝑣𝑎𝑙𝑖𝑑 states, respectively. The term
{𝑣𝑖𝑛𝑑 } ∈ V represents the victim branch, {𝑔0, 𝑔1, . . . } ∈ G is the set
of the attacker’s branch addresses used for poisoning BTB tags, and
{𝑘0, 𝑘1, . . . } ∈ K denotes the set of the attacker’s target addresses
used for poisoning BTB contents. Additionally, 𝑐𝑐 signifies the target
address used for the covert channel, and {𝑎𝑑𝑑𝑟, 𝑡𝑎𝑟𝑔𝑒𝑡} identifies
the malicious branch pair responsible for the BTB collision.

4.2 Prune-Based Attacks
Compared to reuse-based attacks, contention-based timing attacks
require the attacker to construct an eviction set targeting specific
entries in BTB (❺). However, due to the implementation of 𝐼𝑅𝐹
randomization techniques, constructing eviction sets based on tra-
ditional branch addresses fails to cause collisions with the vic-
tim’s branch addresses. Instead, it generates significant observa-
tional noise due to conflicts arising from the attacker’s accesses.
To overcome this challenge, Purnal et al. introduce a technique
called Prime+Prune+Probe in IEEE S&P 2021 [25]. Originally de-
signed for randomized caches, this approach can also be adapted
for randomization-based branch predictors.

To apply this attackmethod to the BTB, the attacker first accesses
a large set of branch addresses to populate the BTB (referred to as
the “Prime” phase). Next, the attacker revisits the branch addresses
used for the initial population and removes those that undergo self-
eviction (i.e., entries marked as 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 and observed as𝑚𝑖𝑠𝑠). This
process, known as the “Prune” phase, is repeated until no further
self-evictions are detected. The attacker then triggers the victim
to execute branch operations involving secret data and revisits the
refined set of branch addresses (this step is referred to as the “Probe”
phase). If any branches are found to be evicted due to the victim’s
operations, the attacker adds them to an eviction set. By iterating
this process, the attacker gathers a sufficient number of colliding
branches, enabling them to infer the victim’s secret data. Figure 4
outlines the high-level steps of prune-based attacks, illustrating the
relationship between the eviction set and the victim branch.

SLOW

FAST
Step 1: Prune

Step 2: Execute Step 3: Observe

Figure 4: High-level overview of prune-based attacks.

Assume that {𝐷𝐴, 𝐷𝑉 } ∈ D represent the security domains of
the attacker and the victim, respectively, and that {𝑇𝐻 ,𝑇𝑀 } ∈ T
correspond to timing observations associated with the 𝑣𝑎𝑙𝑖𝑑 and
𝑖𝑛𝑣𝑎𝑙𝑖𝑑 states, respectively. Let {𝑣𝑖𝑛𝑑 } ∈ V denote the victim branch,
{𝑘0, 𝑘1, . . . } ∈ K represent the set of pruning branch addresses in
the attacker’s domain, 𝑋 denote the size of the expected eviction
set, and {𝑔0, 𝑔1, . . . } ∈ G represent the candidate eviction set. The
detailed steps for this attack are outlined in Algorithm 3. To ob-
tain a sufficiently large eviction set G, we iteratively generate new
pruning sets K until the size of G reaches the desired threshold.

4.3 Occupancy-Based Attacks
The occupancy-based attack was first proposed in USENIX Security
2019 [31], initially targeting cache contention side channels. The
core idea is to infer the victim’s access behavior by filling the en-
tire cache, without knowledge of the cache’s specific configuration
(such as associativity, number of sets, or randomization methods).
Recent studies [12, 15] demonstrate that the occupancy-based at-
tack is a highly effective method for exploiting randomized caches.
Therefore, we apply this approach to randomized branch predictors
to evaluate their security properties.

SLOW
(4 access)

SLOW
(2 access)

Step 1: Occupancy

Step 2: Execute Step 3: Observe

Figure 5: High-level overview of occupancy-based attacks.

In the original occupancy-based attack, the attacker fills the
entire microarchitectural unit. When adapting this attack to the
branch predictor, we draw inspiration from the pruning step of
the Prime+Prune+Probe attack, replacing full occupancy with the
construction of a set of branch addresses that do not self-conflict.
The attacker then selects a specific number of branch predictor
entries to occupy. After the victim’s individual or set of branch in-
structions is executed, the attacker accesses these branch addresses

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

and monitors for conflicts. This approach can not only be applied to
BTB-based attacks but can also be extended to PHT-based attacks.
Figure 5 presents a high-level overview of the occupancy-based
attack process, detailing the steps involved in filling the branch
predictor and monitoring for conflicts.

The generalized steps for constructing the occupancy set are
listed in Algorithm 4 and Algorithm 5. We assume that the se-
curity domains of the attacker and the victim are represented as
{𝐷𝐴, 𝐷𝑉 } ∈ D, and define {𝑇𝐻 ,𝑇𝑀 } ∈ T to represent observa-
tions of the 𝑣𝑎𝑙𝑖𝑑 and 𝑖𝑛𝑣𝑎𝑙𝑖𝑑/𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 states, respectively. Let
{𝑘0, 𝑘1, . . . } ∈ K denote the set of branch addresses controlled by
the attacker, 𝑋 indicate the expected size of the occupancy set, and
{𝑔0, 𝑔1, . . . } ∈ G refer to the candidate occupancy set. Once the
occupancy set is constructed, the attacker can infer information
about the victim by monitoring the execution of the occupancy set
{𝑔0, 𝑔1, . . . } ∈ G and the victim’s branches {𝑣0, 𝑣1, . . . } ∈ V.

4.4 Victim Secret Space
We have successfully established the branch predictor execution
model, the timing observation model and the attack strategies em-
ployed by attackers based on the modeling methodology. To align
our analysis with real-world branch predictor attack scenarios, we
now define the victim’s secret space, categorized into single-bit and
multi-bit secrets, as summarized in Table 1.

Table 1: Attack strategies and victim space in different attacks

Attack Type Attack Strategy Victim Space
Reuse Prune Occupancy Single-Bit Multi-Bit

❶ PHT spec ✓
❷ BTB spec ✓
❸ PHT entry G# ✓ ✓
❹ BTB entry ✓ ✓
❺ BTB set G# G# ✓ ✓

 : In reuse-based attacks, the attacker poisons the same branch predictor
entries as the victim;
G#: In prune-based and occupancy-based attacks, the attacker creates a set
of branch addresses with no self-conflicts;
✓: The victim spaces considered are indicated with a checkmark.

Single-Bit Secret. Single-bit secret spaces are commonly en-
countered in branch predictor attacks, particularly in cryptographic
and system security domains. For instance, in cryptographic con-
texts, a vulnerability in the 𝐸𝑉𝑃_𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑈𝑝𝑑𝑎𝑡𝑒 () function of the
OpenSSL library allows attackers to extract the least significant
bit (LSB) of cryptographic keys [35, 36]. In system security, attacks
targeting ARM pointer authentication exploit the correctness of
authentication results to compromise memory safety [28].

In this case, the victim’s secret data is defined as S = {0, 1}, and
the branch instruction set is represented as {𝑣0, 𝑣1} ∈ V. Attackers
may employ a variety of techniques, including timing attacks target-
ing branch predictor entries (❸ and ❹) or sets (❺) and speculative
attacks (❶ and ❷). These methods exploit timing variations or spec-
ulative execution paths to infer sensitive single-bit information.
Based on the assumptions in our formalized microarchitectural
attack algorithm, the covert channel is limited to encoding secrets

as either 0 or 1. Therefore, our analysis of speculative execution
attacks considers only a single-bit secret space.

Multi-Bit Secret. Victim spaces defined by multi-bit secrets
resemble threat scenarios often seen in cache attacks, which pri-
marily exploit timing variations. However, multi-bit secrets are also
pertinent in branch predictor attacks, particularly in the context
of covert channel attacks and website fingerprinting. For example,
variations in the victim’s secret data may result in accesses to dis-
tinct branch entries in the PHT or branch sets in the BTB. In this
context, the victim’s secret data is expressed as S = {0, 1}𝑚 , where
𝑚 represents the bit length of the secret, and the branch instruction
set is denoted by {𝑣0, 𝑣1, . . . } ∈ V. Attackers can adopt strategies
such as timing attacks on PHT entries (❸), BTB entries (❹) or BTB
sets (❺) to infer multi-bit secrets.

5 Security Evaluation of Randomization-Based
Secure Branch Predictors

In this section, we integrate the previously developed randomized
secure branch predictor model with the side-channel attack model
to quantify side-channel leakage in these secure designs. We first
define several leakage quantification metrics and then use these
metrics to compare various attack strategies and secure designs. Par-
ticular attention is given to Prime+Prune+Probe attack [15, 24, 25]
and Occupancy attack [12, 15, 31], two recently proposed schemes
that pose significant challenges to the security of randomization-
based microarchitecture designs.

5.1 Quantification Metrics and Setup
To evaluate the effectiveness of different attack strategies and assess
the security guarantees of various secure branch predictor designs,
we introduce the following leakage quantification metrics:

• Branch Accesses N: This metric represents the total num-
ber of branch accesses required to achieve the attack’s goal,
encompassing accesses in both the attacker’s spaceG and the
victim’s space V. N is calculated as the following formula:

N[G,V] =
|G |∑︁
𝑖=1

N[G𝑖] +
|V |∑︁
𝑗=1

N[V𝑗] (1)

For instance, in the context of constructing an eviction set, if
1,000 branch operations are needed to construct the eviction
set for a specific branch, the value ofN[G,V] would be 1,000.
This type of metric has been widely used in previous security
evaluations of randomized caches [15, 24], and we extend it
to the security assessment of randomized branch predictors.
• Collision Probability Pr: This metric indicates the proba-
bility of a collision between the attacker’s branches G and
the victim’s branchesV, leading to the leakage of sensitive in-
formation 𝑠 ∈ S (i.e., 𝑠 = [V→ G]) across |𝑅 | repeated trials.
This encompasses branch collisions in reuse-based attacks on
individual entries, covert channel collisions in speculative at-
tacks, and branch collisions between eviction/occupancy sets
and the victim’s branch in prune-based or occupancy-based

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

attacks. The collision probability is calculated as follows:

Pr[𝑠 |G,V] = 1
|𝑅 |

|𝑅 |∑︁
𝑖=1
(𝑠 = [V→ G]) (2)

For example, if the attacker attempts to construct an eviction
set for a specific branch address 1,000 times and succeeds
900 times, the collision probability is 0.9. This metric is also
widely used in the evaluation of randomized caches [12, 24].
• Maximal Leakage Lmax: This metric quantifies the maxi-
mum amount of information that can be leaked through the
attacker’s space G and the victim’s space V in side-channel
attacks [12], while accommodating different secret spaces S.
It provides a relative measure of leakage by comparing the
actual leakage to random guessing, rather than outputting
an absolute leakage value in bits. The calculation formula
for the maximum leakage is defined as follows:

Lmax [V→ G] = log2

(∑︁
𝑠∈S

max
G
[Pr[𝑠 |G,V]]

)
(3)

Assume that when the victim accesses secret data 0, the at-
tacker observes the probabilities of a branch hit and branch
miss as 0.1 and 0.9, respectively, while for secret data 1,
the probabilities are 0.8 and 0.2, respectively. In this case,
the maximum collision probabilities are 0.9 and 0.8, respec-
tively. The maximum leakage Lmax can then be computed
as log2 (0.9 + 0.8) = 0.77 bits.

During the subsequent evaluation of randomized secure branch
predictors, we will utilize these metrics to quantify the leakage of
sensitive information across various attack strategies and victim
spaces. For the branch predictor configurations, we set the PHTwith
1024 entries and employ a 2-bit saturating counter (3-bit for BSUP).
The BTB is configured with 1024 sets and a 4-way associativity. The
maximum threshold for branch accesses is defined as |N[G,V] | =
108, based on Zhao et al. [44], who suggest that 227 (≈ 108) branch
accesses are infeasible in real-world attacks.

Next, to establish tight connection between the abstract branch
predictor model and the formally defined microarchitectural attack
methodology, we develop a software simulator with the following
implementation strategy:
• Component Structure: In our simulator, we define vec-
tor variables to model the parameters of the PHT and BTB,
explicitly specifying the counter, tag, and target address.
The lookup operations for PHT and BTB entries are imple-
mented using the 𝐿𝑜𝑜𝑘𝑢𝑝𝑃𝐻𝑇 and 𝐿𝑜𝑜𝑘𝑢𝑝𝐵𝑇𝐵 functions.
The updates to PHT and BTB entries are handled through
the 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝐻𝑇 and 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑇𝐵 functions. These functions
are designed to simulate the behavior of the PHT and BTB
components according to the branch predictor model de-
scribed in Section 3.2.
• Timing Observation:We determine timing observations
based on the return values of 𝐿𝑜𝑜𝑘𝑢𝑝𝑃𝐻𝑇 and 𝐿𝑜𝑜𝑘𝑢𝑝𝐵𝑇𝐵
functions. This value indicates a ℎ𝑖𝑡 (1) or a𝑚𝑖𝑠𝑠(0), aligning
with the timing observation model presented in Section 3.3.
• 𝐼𝑅𝐹 and 𝐶𝑅𝐹 Functions: We compute randomized set in-
dices for branches using the𝑔𝑒𝑡𝑃𝐻𝑇𝑆𝑒𝑡 and𝑔𝑒𝑡𝐵𝑇𝐵𝑆𝑒𝑡 func-
tions. The PHT and BTB contents are obfuscated using the

𝑔𝑒𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟 , 𝑔𝑒𝑡𝐵𝑇𝐵𝑇𝑎𝑔, and 𝑔𝑒𝑡𝐵𝑇𝐵𝐷𝑒𝑠𝑡 functions. Each
design includes its own specific function implementations,
as detailed in Section 3.4.
• Attack Algorithms: The formally defined attack algorithms
in Section 4 are implemented as simulator functions to model
the attack processes and evaluate corresponding security
properties. For each implementation of the attack algorithms,
we collect statistics on branch access counts (i.e., the number
of lookup calls) and the corresponding timing observations
(used to detect branch collisions) under various attack strate-
gies and input parameter configurations.
• Leakage Calculation: The statistics collected during the
simulated attack process provide a solid foundation for an-
alyzing the relationship between quantitative metrics and
attacks. Based on the collected data and the previously de-
fined formulas, we compute the N, Pr, and Lmax.

5.2 Reuse-Based Attack Evaluation
We first analyzing attack scenarios targeting specific entries in the
branch predictor, focusing on reuse-based PHT and BTB attacks that
involve both timing and speculative attacks. Using the metrics N
and Pr, we evaluate the attacker’s ability to create branch collisions
between the attacker’s branches and the victim’s branches.

Baseline BSUP XOR Noisy-XOR LS-BP STBPU HyBP
Branch Predictor

102

104

106

108

1010

B
ra

nc
h

A
cc

es
se

s
(N

)

8

3 5

9
5
4
3
9

3
0
7
9

>
1
0

8

1
2

3
7
4
0
4
6

>
1
0

8

2
8
4
0
6

>
1
0

8

>
1
0

8

1
4
2
3
4

2
9
4
8

3
0
9
3 2
6
2
4
2

>
1
0

8

>
1
0

8

2
5
8
8
5

>
1
0

8

>
1
0

8

PHT Collision BTB Timing BTB Speculative

Figure 6: Number of branch accesses required for entry colli-
sion in reuse-based PHT and BTB attacks.

Evaluate Average Collison Accesses (❶–❹). As shown in
Figure 6, we find that attackers can still successfully carry out PHT
attacks with an average of fewer than 106 memory accesses under
existing secure designs. In particular, for XOR-BP employing only
the 𝐶𝑅𝐹 content randomization, attackers can easily exploit PHTs
with a limited number of saturation counter bits. In contrast, LS-BP,
which only uses 𝐼𝑅𝐹 index randomization, significantly increases
the attack complexity. Then, security designs that integrate both
randomization techniques can further enhance the attack difficulty.
Additionally, we notice that BSUP, which increases the number of
bits in the saturation counter based on randomization, can effec-
tively improve PHT attack resistance.

For BTB timing attacks, BSUP and LS-BP introduce 𝐼𝑅𝐹 ran-
domization to the BTB set mapping, significantly increasing the
difficulty for attackers to execute such attacks. However, attackers
can still achieve collisions with an average of 3,000 branch accesses.
In contrast, the XOR-BP design, which applies 𝐶𝑅𝐹 randomization
to BTB tags, raises the difficulty of constructing such collisions to
4×106 of accesses. Further analysis reveals that the security designs

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Noisy-XOR-BP, STBPU, and HyBP can effectively defend against
timing attacks. These designs prevent attackers from achieving
malicious branch collisions involving both sets and tags, even after
repeated attempts of up to 108 branch accesses. For speculative
attacks, security designs such as BSUP, XOR-BP, Noisy-XOR-BP,
STBPU, and HyBP apply 𝐶𝑅𝐹 randomization to the BTB target
addresses. This ensures that attackers are unable to construct mali-
cious branches within 108 branch accesses.

104 105 106 107 108

Branch Accesses (N)

0.0

0.5

1.0

C
ol

lis
io

n
P

ro
ba

bi
lit

y
(P

r)

Baseline

BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

PHT Collision

BTB Timing

BTB Speculative

PHT Collision

BTB Timing

BTB Speculative

Figure 7: Collision probability for entry collision in reuse-
based PHT and BTB attacks.

Calculate Collision Probability (❶–❹).We then assess the col-
lision probability between the attacker’s and the victim’s branches
in reuse-based PHT and BTB attacks. As illustrated in Figure 7, the
collision probability increases with the number of branch accesses,
denoted as N. For example, in the case of PHT attacks, the collision
probability reaches 90% after approximately 105 branch accesses
for all designs except BSUP, which requires about 5 × 105 accesses.
Meanwhile, for BTB timing attacks, the collision probability reaches
90% after 104 branch accesses for the baseline, BSUP, and LS-BP de-
signs, while XOR-BP requires about 106 accesses. However, for BTB
speculative attacks, the 90% collision probability is rarely achieved,
even after 108 branch accesses, except for the baseline and LS-BP
designs. Additionally, we observe that Noisy-XOR-BP, STBPU, and
HyBPmaintain a relatively low collision probability when subjected
to reuse-based BTB attacks.

Takeaways. For reuse-based attacks, 𝐼𝑅𝐹 increases the at-
tacker’s complexity; however, the attacker can still generate
branch conflicts within a reasonable number of branch ac-
cesses. In contrast, the security of 𝐶𝑅𝐹 relies on bit width,
making encrypted BTB significantly more secure than PHT.
PHT reuse attacks (both timing and speculative) remain a
major challenge for secure branch predictor designs.

5.3 Prune-Based Attack Evaluation
Next, we examine the Prime+Prune+Probe attack in the context of
constructing eviction sets targeting particular BTB entries. Using
N and Pr, we assess the attacker’s capacity to create pruning sets
for branch collisions and the impact of different branch accesses.

Determine Optimal BTB Pruning Set Size (❺). Previous for-
mal verification studies on randomized caches have shown that
the size of the pruning set influences the number of accesses the

0 500 1000 1500 2000 2500 3000 3500 4000

Pruning Set Size (K)

103

104

105

106

107

108

B
ra

nc
h

A
cc

es
se

s
(N

)

Baseline

BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

Figure 8: Number of branch accesses required for different
pruning set sizes in prune-based attacks.

attacker requires to construct eviction sets. Building on this in-
sight, we analyze how different pruning set sizes impact BTB set
collisions. As depicted in Figure 8, for baseline designs and XOR-
BP without indexing randomization (𝐼𝑅𝐹), the number of branch
accesses needed to create BTB set conflicts increases with the prun-
ing set size. In contrast, the other five designs exhibit the opposite
trend. For the former two designs, the optimal pruning set size, K,
is approximately 100, requiring around 400 accesses. For the latter
designs, the optimal pruning set size is about 3,800, necessitating
approximately 105 accesses.

50000
100000

150000
200000

250000
300000

Branch Accesses (N)

0.0

0.5

1.0

C
ol

lis
io

n
P

ro
ba

bi
lit

y
(P

r) Baseline

BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

Figure 9: Collision probability for different branch accesses
in prune-based attacks.

Calculate Collision Probability (❺). After determining the
optimal pruning set size for different types of randomized branch
predictor designs, we further analyze the impact of branch accesses
on collision probability. As Figure 9 illustrates, the collision proba-
bility between the attacker’s branches and the victim’s branches
increases with the number of branch accesses N. This trend is con-
sistent across all designs, regardless of whether randomization is
applied. For instance, in randomized designs with both 𝐼𝑅𝐹 and
𝐶𝑅𝐹 , the attacker requires approximately 2.5× 105 branch accesses
to achieve a 90% collision probability. These results indicate that
even with 𝐼𝑅𝐹 and 𝐶𝑅𝐹 randomization, attackers can effectively
leverage Prime+Prune+Probe attacks to infer the victim’s secret.

Takeaways. Although 𝐼𝑅𝐹 randomization is designed to pre-
vent attackers from reasoning about the mapping between
branches and entries—thereby making eviction set construc-
tion difficult—its effectiveness falls short of expectations. In
practice, pruning-based strategies allow attackers to construct

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

eviction sets within a reasonable number of branch accesses,
affecting all existing randomized BTBs.

5.4 Occupancy-Based Attack Evaluation
Subsequently, we address emerging occupancy-based attacks, which
do not rely on microarchitectural parameters. Using the same
metrics-N and Pr-we evaluate the size of the occupancy sets re-
quired by the attacker to fill the branch predictor, the collision
probability under varying occupancy rates. In the following experi-
ments on pruning sets and occupancy sets, we only analyze 6 secure
designs and exclude the baseline. This is primarily because, for in-
secure PHT and BTB structures, the attacker can directly observe
the mapping between branch addresses and predictor components,
making occupancy-based attack strategies unnecessary.

0 20 40 60 80 100

Pruning Set Size (K)

106

107

B
ra

nc
h

A
cc

es
se

s
(N

)

BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

Figure 10: Number of branch accesses required for different
pruning set sizes in occupancy-based PHT attacks.

Determine Optimal PHT Pruning Set Size (❸). Similar to
the evaluation of prune-based attacks conducted previously, we
first analyze the impact of different sizes of pruning sets on the
PHT occupancy attack. The experimental results in Figure 10 in-
dicate that as the number of branch addresses in the pruning set
K increases, the number of branch accesses required for the at-
tacker to fill the entire 210-entry PHT first decreases and then
increases. This is because an insufficient pruning set often fails to
induce adequate branch collisions, whereas large one introduces
excessive self-conflicts. Both cases result in a higher number of
required branch accesses. Regardless of which randomization tech-
nique is employed in PHT designs, the minimum number of branch
accesses occurs when the pruning set size is about 20. For exist-
ing randomized PHTs, this value represents the security boundary
and characterizes the point at which the attacker’s capability is
maximized. For secure designs with 2-bit saturating counters, the
attacker requires approximately 106 branch accesses, whereas for
BSUP with 3-bit saturating counters, the attacker requires around
2 × 106 branch accesses.

Determine Optimal BTB Pruning Set Size (❺). Then, we shift
the focus to occupancy-based attacks targeting the BTB, beginning
with an analysis of the optimal pruning set size required to execute
an effective attack. As illustrated in Figure 11, when populating the
entire 212-entry BTB, the number of branch accesses needed by the
attacker initially decreases and then increases as the pruning set size
grows. Similar to the results observed in the PHT experiments, this

0 500 1000 1500 2000 2500 3000 3500 4000

Pruning Set Size (K)

105

106

B
ra

nc
h

A
cc

es
se

s
(N

)

BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

Figure 11: Number of branch accesses required for different
pruning set sizes in occupancy-based BTB attacks.

trend is also caused by insufficient or excessive branch collisions.
Interestingly, our findings reveal that regardless of which indexing
or content randomization is employed, the attacker can still launch
the attack with approximately 1.5 × 105 branch accesses (when
the size of pruning set K is 600), even without knowledge of the
BTB’s exact configuration. The optimal pruning set size of 600 also
reflects the security limit of existing randomized BTBs.

50000
100000

150000
200000

250000
300000

350000
400000

450000
500000

Branch Accesses (N)

0.0

0.5

1.0

C
ol

lis
io

n
P

ro
ba

bi
lit

y
(P

r) BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

Figure 12: Collision probability for different branch accesses
in occupancy-based PHT attacks.

Generate Diverse PHT Occupancy Sets (❸). Next, we evalu-
ate the collision probability between the attacker’s occupancy set
and branches associated with the victim’s secret data by varying the
number of branch accesses. The experimental results are presented
in Figure 12. As the size of the occupancy set G (no self-conflicts)
and the number of branch accesses N increase, we observe a cor-
responding rise in the collision probability between the attacker
and the victim. Specifically, the attacker needs only 3 × 105 branch
accesses to achieve a 90% collision probability, with the exception
of BSUP, which requires 5 × 105 branch accesses.

Generate Diverse BTB Occupancy Sets (❺). Following this,
we analyze the impact of different occupancy set sizes on BTB
occupancy attacks. We investigate the collision probability between
the attacker and the victim through varying numbers of branch
accesses. The results are illustrated in Figure 13. Similar to PHT
occupancy attacks, we observe that the collision probability in BTB
occupancy attacks increases with both the size of the occupancy set
G (no self-conflicts) and the number of branch accessesN. Moreover,
the attacker only needs to construct a BTB occupancy set with
6 × 104 branch accesses to achieve a 90% collision probability.

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

20000
40000

60000
80000

100000
120000

140000
160000

180000
200000

Branch Accesses (N)

0.0

0.5

1.0

C
ol

lis
io

n
P

ro
ba

bi
lit

y
(P

r) BSUP

XOR

Noisy-XOR

LS-BP

STBPU

HyBP

Figure 13: Collision probability for different branch accesses
in occupancy-based BTB attacks.

Takeaways.When the attacker’s constraints are relaxed by
removing the need for knowledge of specific microarchitec-
tural parameters and relying instead on occupancy state as
the observation, the effectiveness of randomization appears
to vanish. We find that despite different designs employing
various random mapping or encryption functions, the unifor-
mity of these algorithms enables attackers to easily construct
occupancy sets that avoid self-conflicts.

5.5 Maximal Leakage: Single-Bit Secret Space
Furthermore, we evaluate the security of existing randomized se-
cure branch predictors using two single-bit secret scenarios. The
first scenario is like a cryptographic attack, where the secret is the
LSB in OpenSSL’s 𝐸𝑉𝑃_𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑈𝑝𝑑𝑎𝑡𝑒 () function. The second sce-
nario is like a system attack, where the sensitive data corresponds
to the correctness of pointer authentication. In our evaluation, we
utilize the maximal leakage metric and reuse-based attacks.

Baseline BSUP XOR Noisy-XOR LS-BP STBPU HyBP
Branch Predictor

0.0

0.5

1.0

M
ax

im
al

L
ea

ka
ge

(L
m

a
x

)

1
.0

0
1
.0

0
1
.0

0
1
.0

0

0
.9

7
1
.0

0
1
.0

0
1
.0

0

0
.0

4
0
.3

1
0
.9

4
1
.0

0

0
.0

0
0
.0

0
0
.0

0
0
.0

0

0
.9

7
1
.0

0
1
.0

0
1
.0

0

0
.0

0
0
.0

0
0
.0

0
0
.0

0

0
.0

0
0
.0

0
0
.0

0
0
.0

0

104 105 106 107

Figure 14: Maximal leakage evaluation for inferring 0/1 bits.

Inference of “0” and “1” Bits. In this experiment, the victim’s
secret is a randomly generated bit, either “0” or “1,” which cor-
responds to correct and incorrect BTB predictions, respectively.
The attacker-victim interaction follows these steps: the attacker
first trains the BTB, then triggers the victim to execute the sensi-
tive function, and finally infers the secret value by observing the
BTB state. As shown in Figure 14, our experimental results align
with previous findings: after approximately 106 branch accesses,
the maximum leakage reaches 1.00, 0.94, and 1.00 for the BSUP,
XOR-BP, and LS-BP designs, respectively. This confirms that secret

data can be extracted via reuse-based BTB timing side-channel at-
tacks. In contrast, the Noisy-XOR-BP, STBPU, and HyBP designs
demonstrate relatively higher security guarantees.

Baseline BSUP XOR Noisy-XOR LS-BP STBPU HyBP
Branch Predictor

0.0

0.5

1.0

M
ax

im
al

L
ea

ka
ge

(L
m

a
x

)

1
.0

0
1
.0

0
1
.0

0
1
.0

0

0
.1

2
0
.7

4
1
.0

0
1
.0

0

1
.0

0
1
.0

0
1
.0

0
1
.0

0

0
.3

8
0
.9

8
1
.0

0
1
.0

0

0
.6

3
1
.0

0
1
.0

0
1
.0

0

0
.4

0
0
.9

8
1
.0

0
1
.0

0

0
.3

7
0
.9

9
1
.0

0
1
.0

0

104 105 106 107

Figure 15: Maximal leakage evaluation for inferring specula-
tive execution paths.

Inference of Speculative Execution Paths. In this experiment,
we assume that a covert channel is always present, and different
speculative execution paths encode distinct secret values through
the covert channel during PHT speculative execution. The attacker-
victim interaction follows these steps: the attacker first trains the
PHT, then triggers the victim’s speculative execution, and finally
recovers the secret data by analyzing the covert channel state. The
experimental results illustrated in Figure 15 corroborate prior reuse
attack analyses: regardless of whether a 2-bit or 3-bit saturating
counter is used, the maximum leakage reaches 1.00 after approxi-
mately 106 branch accesses. This demonstrates that attackers can
effectively exploit PHT-based speculative execution attacks to re-
cover secret data from the victim.

5.6 Maximal Leakage: Multi-Bit Secret Space
Previous experiments focus on collisions between the attacker’s
and victim’s branches within a single-bit secret space. In this work,
we extend our study to multi-bit secret spaces and explore covert
channel attacks based on occupancy strategies as case studies.

Table 2: Maximal leakage for different attacker’s branch ac-
cesses and number of iterations in PHT occupancy attacks

Design 1 Iteration 2 Iterations 4 Iterations
104 105 5 × 105 104 105 5 × 105 104 105 5 × 105

BSUP 0.01 0.01 0.39 0.08 0.14 0.89 0.29 0.64 1.56
XOR 0.00 0.00 0.66 0.10 0.26 1.15 0.39 0.90 1.81

Noisy-XOR 0.00 0.00 0.66 0.11 0.27 1.15 0.38 0.90 1.81
LS-BP 0.01 0.01 0.66 0.10 0.27 1.15 0.37 0.91 1.81
STBPU 0.00 0.00 0.65 0.11 0.25 1.14 0.38 0.89 1.80
HyBP 0.00 0.00 0.66 0.12 0.25 1.15 0.39 0.88 1.81

PHT Leakage Evaluation (❸). We first evaluate the maximum
leakage of existing randomized secure branch predictors under PHT
attacks. This leakage is determined by the probability of branch
conflicts observed by the attacker, the victim’s branch access be-
havior, and the number of iterations performed by the attacker. As
shown in Table 2, the evaluation results indicate that designs using
2-bit saturating counters exhibit similar performance metrics. The

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

maximum leakage increases as the number of branch accesses by
the attacker grows, reaching approximately 0.66 when the attacker
performs 5 × 105 accesses. The BSUP design, which employs 3-bit
saturating counters, demonstrates relatively lower leakage, with a
maximum value of approximately 0.39. Moreover, as the number
of iterations by the attacker increases, the maximum leakage also
rises, and the differences between saturating counters of different
sizes gradually diminish. When the attacker iterates four times, the
maximum leakage reaches approximately 1.81 for the 2-bit saturat-
ing counter and 1.56 for the BSUP, demonstrating the inadequacy
of current randomization strategies against PHT attacks.

Table 3: Maximal leakage for different attacker’s branch ac-
cesses and number of iterations in BTB occupancy attacks

Design 1 Iteration 2 Iterations 4 Iterations
104 105 2 × 105 104 105 2 × 105 104 105 2 × 105

BSUP 0.00 0.71 0.74 0.09 1.19 1.22 0.37 1.85 1.87
XOR 0.01 0.71 0.74 0.11 1.19 1.22 0.39 1.85 1.87

Noisy-XOR 0.01 0.70 0.74 0.10 1.19 1.22 0.38 1.84 1.87
LS-BP 0.01 0.71 0.74 0.11 1.19 1.22 0.39 1.85 1.87
STBPU 0.00 0.70 0.74 0.09 1.19 1.22 0.38 1.84 1.87
HyBP 0.01 0.70 0.74 0.10 1.19 1.22 0.39 1.84 1.87

BTB Leakage Evaluation (❺). Afterward, we evaluate the max-
imum leakage of existing randomized secure branch predictors
under BTB attacks. The leakage is also determined by the branch
conflict probabilities observed by the attacker, the victim’s branch
access behavior, and the number of iterations performed by the
attacker. As demonstrated in Table 3, the leakage behavior remains
consistent regardless of whether randomization mechanisms are
applied, including index randomization, content randomization, or
a combination of both, when subjected to contention-based attacks
where the attacker ignores these parameter details. This observa-
tion aligns with the results of previous experiments. In scenarios
where a single iteration involves up to 2 × 105 branch accesses,
the measured maximum leakage is approximately 0.74. However,
when the attacker increases the iterations to two, the maximum
leakage rises to about 1.22, and further increases to four iterations
result in amaximum leakage of approximately 1.87, highlighting the
limitations of current randomization designs against BTB attacks.

Takeaways. After the systematic evaluation of existing ran-
domized secure branch predictors, we conclude that their secu-
rity guarantees remain limited. While Noisy-XOR-BP, STBPU,
and HyBP effectively mitigate BTB reuse attacks, all existing
designs remain vulnerable to other attack vectors, including
PHT reuse attacks, BTB pruning attacks, and PHT/BTB occu-
pancy attacks.

6 Discussion
Comparison with Prior Work. Compared to existing microarchi-
tectural evaluation frameworks, our work introduces innovations in
the following aspects. First, in terms of the target of leakage quantifi-
cation frameworks, most existing works focus on randomized cache

structure designs (e.g., CaSA [8], Prime+Prune+Probe attack [25],
Metior [12], and CacheFX [15]) or different cache replacement poli-
cies (e.g., the framework by Peters et al. [24]). In contrast, our work
shifts the focus to branch predictor structures, which have received
comparatively less attention in this context despite playing a critical
role in microarchitectural security. Second, regarding leakage quan-
tification metrics, our work effectively integrates the strengths of
state-of-the-art frameworks such as Metior [12] and CacheFX [15].
Unlike approaches that rely solely on mutual information or ac-
cess entropy, our framework can simultaneously evaluate attack
complexity, collision probability, and maximum leakage, thereby
enabling more interpretable and comprehensive leakage quantifi-
cation [38]. Third, with respect to branch prediction, although the
works by Wang et al. [35, 36] also evaluate the security guarantees
of secure branch predictor designs, their three-step attack model is
overly simplified and limited to qualitative analysis. In comparison,
our model of branch predictors and formalized attack algorithms
captures fine-grained characteristics of branch accesses, allowing
for precise, quantitative evaluation of side-channel leakage.

Future Directions and Extensibility. Future research should
prioritize on developing more effective countermeasures, such as
hybrid designs like SassCache [16] or non-deterministic approaches
like PhantomCache [32] in the cache domain.Meanwhile, our frame-
work can be easily extended to assess such designs. Similar to the
approach taken by Giner et al. [16], who integrated SassCache into
CacheFX, the variable parameters and function implementations in
our framework can be adapted to support the security analysis of
partitioning-based and more complex designs, beyond just random-
ized ones. Additionally, more attention should be given to the PHT,
which remains the weakest link in current secure designs and is
particularly vulnerable to Spectre attacks.

7 Conclusion
This paper introduces a leakage quantification framework for mod-
eling microarchitectural attacks and quantifying side-channel leak-
age in randomization-based secure branch predictors during the
early design phase. We first develop a branch predictor model fo-
cused on side-channel security, emphasizing the PHT and BTB com-
ponents, integrating index and content randomization techniques,
and incorporating timing observation mechanisms to capture both
timing and speculative attacks. Next, we formalize different types of
microarchitectural attack strategies and victim secret spaces, based
on the characteristics of existing branch predictor vulnerabilities. Fi-
nally, we introduce quantification metrics from the perspectives of
attacker cost and information leakage, using them to assess the side-
channel security properties of randomized branch predictor designs.
While our experiments show that secure branch predictor designs
can mitigate parts of security threats, existing countermeasures
fail to effectively mitigate reuse-based PHT attacks, prune-based
and occupancy-based attacks, underscoring the need for further
development of secure branch predictors.

Acknowledgments
This work was supported by the National Key R&D Program of
China under Grant No. 2022YFB3103800. We would also like to

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

thank the shepherd and anonymous reviewers of AsiaCCS 2025 for
their constructive and insightful comments.

References
[1] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch Predic-

tion Vulnerabilities in OpenSSL and Necessary Software Countermeasures. In
Proceedings of the 11th IMA International Conference on Cryptography and Coding.
Springer, 185–203.

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power of
Simple Branch Prediction Analysis. In Proceedings of the 2nd ACM Symposium on
Information, Computer and Communications Security. ACM, 312–320.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting Secret
Keys via Branch Prediction. In Proceedings of the 7th Cryptographers’ track at the
RSA conference on Topics in Cryptology. Springer, 225–242.

[4] Sam Ainsworth and Timothy M Jones. 2020. MuonTrap: Preventing Cross-
Domain Spectre-Like Attacks by Capturing Speculative State. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
132–144.

[5] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch History Injection: On the Effectiveness of Hardware Mit-
igations Against Cross-Privilege Spectre-v2 Attacks. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, 971–988.

[6] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and Debdeep
Mukhopadhyay. 2017. Template Attack on Blinded Scalar Multiplication with
Asynchronous perf-ioctl Calls. IACR Cryptology ePrint Archive (2017), 968.

[7] Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin, and Debdeep
Mukhopadhyay. 2019. Branch Prediction Attack on Blinded Scalar Multipli-
cation. IEEE Trans. Comput. 69, 5 (2019), 633–648.

[8] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer, and Mengjia
Yan. 2020. CaSA: End-to-end Quantitative Security Analysis of RandomlyMapped
Caches. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 1110–1123.

[9] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and Srinivas
Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order Proces-
sor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 42–56.

[10] Congcong Chen, Chaoqun Shen, and Jiliang Zhang. 2022. Lightweight and Secure
Branch Predictors against Spectre Attacks. In 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 25–30.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Spec-
ulative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142–157.

[12] PeterWDeutsch, Weon Taek Na, Thomas Bourgeat, Joel S Emer, andMengjia Yan.
2023. Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel
Defense Schemes. In Proceedings of the 50th Annual International Symposium on
Computer Architecture. ACM, 1–16.

[13] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1–13.

[14] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A New Side-Channel Attack on Directional Branch Predic-
tor. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 693–707.

[15] Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou, Thomas Un-
terluggauer, and Yuval Yarom. 2023. CacheFX: A Framework for Evaluating
Cache Security. In Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security. ACM, 163–176.

[16] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas Unter-
luggauer, Stefan Mangard, and Daniel Gruss. 2023. Scatter and Split Securely:
Defeating Cache Contention and Occupancy Attacks. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 2273–2287.

[17] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai,
and Mingshu Li. 2020. Bluethunder: A 2-level Directional Predictor Based Side-
Channel Attack against SGX. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020, 1 (2020), 321–347.

[18] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In 2019 56th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[19] Juhee Kim, Jinbum Park, Sihyeon Roh, Jaeyoung Chung, Youngjoo Lee, Taesoo
Kim, and Byoungyoung Lee. 2025. TikTag: Breaking ARM’s Memory Tagging
Extension with Speculative Execution. In 2025 IEEE Symposium on Security and
Privacy (SP). IEEE.

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.

[21] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).
1–12.

[22] Jaekyu Lee, Yasuo Ishii, and Dam Sunwoo. 2020. Securing Branch Predictors with
Two-Level Encryption. ACM Transactions on Architecture and Code Optimization
17, 3 (2020), 1–25.

[23] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2109–2122.

[24] Moritz Peters, Nicolas Gaudin, Jan Philipp Thoma, Vianney Lapôtre, Pascal Cotret,
Guy Gogniat, and Tim Güneysu. 2024. On The Effect of Replacement Policies on
The Security of Randomized Cache Architectures. In Proceedings of the 19th ACM
Asia Conference on Computer and Communications Security. ACM, 483–497.

[25] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. 2021. Sys-
tematic Analysis of Randomization-based Protected Cache Architectures. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 987–1002.

[26] Moinuddin K Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In 2018 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 775–787.

[27] Hany Ragab, Andrea Mambretti, Anil Kurmus, and Cristiano Giuffrida. 2024.
GhostRace: Exploiting and Mitigating Speculative Race Conditions. In 33rd
USENIX Security Symposium (USENIX Security 24). USENIX Association, 6185–
6202.

[28] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PACMAN:
attacking ARM pointer authentication with speculative execution. In Proceedings
of the 49th Annual International Symposium on Computer Architecture. ACM,
685–698.

[29] Gururaj Saileshwar and Moinuddin K Qureshi. 2019. CleanupSpec: An "Undo"
Approach to Safe Speculation. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 73–86.

[30] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In 24th European
Symposium on Research in Computer Security. Springer, 279–299.

[31] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through
the Cache Occupancy Channel. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, 639–656.

[32] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. 2020. PhantomCache: Obfuscat-
ing Cache Conflicts with Localized Randomization. In Network and Distributed
Systems Security (NDSS) Symposium 2020. ISOC, 1–17.

[33] Ya Tan, Jizeng Wei, and Wei Guo. 2014. The Micro-architectural Support Coun-
termeasures against the Branch Prediction Analysis Attack. In 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing and Com-
munications. IEEE, 276–283.

[34] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Diestelhorst,
Bashir M Al-Hashimi, and Geoff V Merrett. 2019. BRB: Mitigating Branch Predic-
tor Side-Channels. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 466–477.

[35] QuanchengWang, Ming Tang, Ke Xu, and HanWang. 2024. Modeling, Derivation,
and Automated Analysis of Branch Predictor Security Vulnerabilities. In 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 409–423.

[36] Quancheng Wang, Ming Tang, Ke Xu, and Han Wang. 2025. Unveiling and Eval-
uating Vulnerabilities in Branch Predictors via a Three-Step Modeling Method-
ology. ACM Transactions on Architecture and Code Optimization 22, 1 (2025),
1–26.

[37] Johannes Wikner and Kaveh Razavi. 2022. RETBLEED: Arbitrary Speculative
Code Execution with Return Instructions. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, 3825–3842.

[38] Benjamin Wu, Aaron B Wagner, and G Edward Suh. 2020. A Case for Maximal
Leakage as A Side Channel Leakage Metric. arXiv preprint arXiv:2004.08035
(2020), 1–21.

[39] Wenjie Xiong and Jakub Szefer. 2021. Survey of Transient Execution Attacks and
Their Mitigations. Comput. Surveys 54, 3 (2021), 1–36.

[40] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 428–441.

[41] Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan. 2023. Pensieve:
Microarchitectural Modeling for Security Evaluation. In Proceedings of the 50th
Annual International Symposium on Computer Architecture. ACM, 1–15.

[42] Tao Zhang, Timothy Lesch, Kenneth Koltermann, and Dmitry Evtyushkin. 2022.
STBPU: A Reasonably Secure Branch Prediction Unit. In 2022 52nd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 109–123.

ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Quancheng Wang, Ming Tang, Ke Xu, and Han Wang

[43] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Jiazhen Li, Lixin Zhang,
Xuehai Qian, and Dan Meng. 2021. A Lightweight Isolation Mechanism for
Secure Branch Predictors. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1267–1272.

[44] Lutan Zhao, Peinan Li, Rui Hou, Michael C Huang, Xuehai Qian, Lixin Zhang,
and Dan Meng. 2022. HyBP: Hybrid Isolation-Randomization Secure Branch
Predictor. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 346–359.

A Formalized Microarchitectural Attack
Algorithms on Branch Predictors

Algorithm 1: Reuse-Based Attacks on PHT. The attacker can
iteratively evaluate a set of branch instructions to identify one
that triggers the expected collision. Let {𝐴𝑇 , 𝐴𝑆 } ∈ A represent
the timing (❶) and speculative (❸) attack types, respectively, and
let 𝑛 denote the number of bits in the saturating counter. Define
{𝐷𝐴, 𝐷𝑉 } ∈ D as the security domains of the attacker and victim,
and {𝑇𝐻 ,𝑇𝑀 } ∈ T as the timing observations corresponding to the
𝑣𝑎𝑙𝑖𝑑 and𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 states, respectively. Let {𝑣𝑐𝑜𝑛𝑑 } ∈ V denote
the victim branch, {𝑔0, 𝑔1, . . . } ∈ G the set of attacker’s branch
addresses, 𝑐𝑐 the covert channel address (used only in speculative
attacks), and 𝑎𝑑𝑑𝑟 the output branch that causes the PHT collision.
The detailed steps for this attack are provided in Algorithm 1.

Algorithm 1: Steps for reuse-based attacks on PHT entries
Input: Attack type {𝐴𝑇 , 𝐴𝑆 } ∈ A; bits in saturating

counter 𝑛; Security domains {𝐷𝐴, 𝐷𝑉 } ∈ D; Timing
observations {𝑇𝐻 ,𝑇𝑀 } ∈ T; Victim branch
{𝑣𝑐𝑜𝑛𝑑 } ∈ V; Set of attacker’s branches
{𝑔0, 𝑔1, . . . } ∈ G; Covert channel address 𝑐𝑐 .

Output: Malicious branch address 𝑎𝑑𝑑𝑟 .
1 for 𝑔 ∈ G do
2 for 𝑐𝑡𝑟 ∈ {0, 1}𝑛 do
3 // train PHT entries;
4 for 𝑖 ∈ 𝑐𝑡𝑟 do
5 𝑃𝐻𝑇 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑔, 𝐷𝐴);
6 // trigger victim branch and check states;
7 if 𝐴𝑇 then
8 assign 𝑇 ← 𝑃𝐻𝑇 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑣𝑐𝑜𝑛𝑑 , 𝐷𝑉);
9 if 𝑇 = 𝑇𝑀 then
10 assign 𝑎𝑑𝑑𝑟 ← 𝑔;
11 return;

12 else if 𝐴𝑆 then
13 𝑃𝐻𝑇 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑣𝑐𝑜𝑛𝑑 , 𝐷𝑉);
14 assign 𝑇 ← 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑐𝑐);
15 if 𝑇 = 𝑇𝐻 then
16 assign 𝑎𝑑𝑑𝑟 ← 𝑔;
17 return;

Algorithm 2: Reuse-Based Attacks on BTB. The attacker can
perform random tests with branch instructions to identify one that
reliably triggers mispredictions for both types of attacks. For specu-
lative attacks, the attacker must then iteratively enumerate and find
a specific target address that induces the desired covert channel

Algorithm 2: Steps for reuse-based attacks on BTB entries
Input: Attack type {𝐴𝑇 , 𝐴𝑆 } ∈ A; Security domains

{𝐷𝐴, 𝐷𝑉 } ∈ D; Timing observations {𝑇𝐻 ,𝑇𝑀 } ∈ T;
Victim branch {𝑣𝑖𝑛𝑑 } ∈ V; Set of attacker’s branches
{𝑔0, 𝑔1, . . . } ∈ G; Set of attacker’s targets
{𝑘0, 𝑘1, . . . } ∈ K; Covert channel address 𝑐𝑐 .

Output: Malicious pair of branch addresses {𝑎𝑑𝑑𝑟, 𝑡𝑎𝑟𝑔𝑒𝑡}.
1 for 𝑔 ∈ G do
2 // train BTB entries;
3 assign 𝑘 ← 𝑘0;
4 assign 𝑝 ← {𝑔, 𝑘};
5 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑝, 𝐷𝐴);
6 // trigger victim branch and check states;
7 assign 𝑇 ← 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑣𝑖𝑛𝑑 , 𝐷𝑉);
8 if 𝑇 = 𝑇𝑀 then
9 if 𝐴𝑇 then
10 assign {𝑎𝑑𝑑𝑟, 𝑡𝑎𝑟𝑔𝑒𝑡} ← 𝑝;
11 return;
12 else if 𝐴𝑆 then
13 for 𝑘′ ∈ K do
14 assign 𝑝′ ← {𝑔, 𝑘′};
15 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑝′, 𝐷𝐴);
16 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑣𝑖𝑛𝑑 , 𝐷𝑉);
17 assign 𝑇 ′ ← 𝑎𝑐𝑐𝑒𝑠𝑠 (𝑐𝑐);
18 if 𝑇 ′ = 𝑇𝐻 then
19 assign {𝑎𝑑𝑑𝑟, 𝑡𝑎𝑟𝑔𝑒𝑡} ← 𝑝′;
20 return;

encoding (an additional step unnecessary in timing attacks). The
detailed steps for this process are outlined in Algorithm 2. In this
context, {𝐴𝑇 , 𝐴𝑆 } ∈ A represent the timing (❷) and speculative (❹)
attack types, respectively. Similarly, {𝐷𝐴, 𝐷𝑉 } ∈ D denote the secu-
rity domains of the attacker and victim, while {𝑇𝐻 ,𝑇𝑀 } ∈ T refer
to the timing observations under the 𝑣𝑎𝑙𝑖𝑑 and𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡/𝑖𝑛𝑣𝑎𝑙𝑖𝑑
states, respectively. The term {𝑣𝑖𝑛𝑑 } ∈ V represents the victim
branch, {𝑔0, 𝑔1, . . . } ∈ G is the set of the attacker’s branch ad-
dresses used for poisoning BTB tags, and {𝑘0, 𝑘1, . . . } ∈ K denotes
the set of the attacker’s target addresses used for poisoning BTB
contents. Additionally, 𝑐𝑐 signifies the target address used for the
covert channel, and {𝑎𝑑𝑑𝑟, 𝑡𝑎𝑟𝑔𝑒𝑡} identifies the malicious branch
pair responsible for the BTB collision.

Algorithm 3: Prune-Based Attacks. Assume that {𝐷𝐴, 𝐷𝑉 } ∈
D represent the security domains of the attacker and the victim,
respectively, and that {𝑇𝐻 ,𝑇𝑀 } ∈ T correspond to timing observa-
tions associated with the 𝑣𝑎𝑙𝑖𝑑 and 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 states, respectively. Let
{𝑣𝑖𝑛𝑑 } ∈ V denote the victim branch, {𝑘0, 𝑘1, . . . } ∈ K represent
the set of pruning branch addresses in the attacker’s domain, 𝑋
denote the size of the expected eviction set, and {𝑔0, 𝑔1, . . . } ∈ G
represent the candidate eviction set. To obtain a sufficiently large
eviction set G, we iteratively generate new pruning sets K until the
size of G reaches the desired threshold.

BranchGauge: Modeling andQuantifying Side-Channel Leakage in Randomization-Based Secure Branch Predictors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

Algorithm 4: Steps for constructing occupancy set on PHT
Input: Security domains {𝐷𝐴, 𝐷𝑉 } ∈ D; Timing

observations {𝑇𝐻 ,𝑇𝑀 } ∈ T; Pruning set
{𝑘0, 𝑘1, . . . } ∈ K; Size of occupancy set 𝑋 .

Output: Occupancy set {𝑔0, 𝑔1, . . . } ∈ G.
1 while |G| < 𝑋 do
2 do
3 // prime and prune self-conflicts;
4 for 𝑘 ∈ K do
5 for 𝑘′ ∈ K \ {𝑘} do
6 assign 𝑇 ← 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 (𝑘, 𝑘′);
7 if 𝑇 = 𝑇𝑀 then
8 assign K← K \ {𝑘};

9 while self-eviction detected;
10 // probe collision with G;
11 for 𝑔 ∈ G do
12 𝑃𝐻𝑇 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑔, 𝐷𝐴);
13 for 𝑘 ∈ K do
14 assign 𝑇 ′ ← 𝑃𝐻𝑇 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
15 if 𝑇 ′ = 𝑇𝐻 then
16 assign G← G ∪ {𝑘};

Algorithm 5: Steps for constructing occupancy set on BTB
Input: Security domains {𝐷𝐴, 𝐷𝑉 } ∈ D; Timing

observations {𝑇𝐻 ,𝑇𝑀 } ∈ T; Pruning set
{𝑘0, 𝑘1, . . . } ∈ K; Size of occupancy set 𝑋 .

Output: Occupancy set {𝑔0, 𝑔1, . . . } ∈ G.
1 while |G| < 𝑋 do
2 do
3 // prime and prune self-conflicts;
4 for 𝑘 ∈ K do
5 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
6 for 𝑘 ∈ K do
7 assign 𝑇 ← 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
8 if 𝑇 = 𝑇𝑀 then
9 assign K← K \ {𝑘};

10 while self-eviction detected;
11 // probe collision with G;
12 for 𝑔 ∈ G do
13 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑔, 𝐷𝐴);
14 for 𝑘 ∈ K do
15 assign 𝑇 ′ ← 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
16 if 𝑇 ′ = 𝑇𝐻 then
17 assign G← G ∪ {𝑘};

Algorithm 3: Steps for prune-based attacks on BTB sets
Input: Security domains {𝐷𝐴, 𝐷𝑉 } ∈ D; Timing

observations {𝑇𝐻 ,𝑇𝑀 } ∈ T; Victim branch
{𝑣𝑖𝑛𝑑 } ∈ V; Pruning set {𝑘0, 𝑘1, . . . } ∈ K; Size of
eviction set 𝑋 .

Output: Eviction set {𝑔0, 𝑔1, . . . } ∈ G.
1 while |G| < 𝑋 do
2 do
3 // prime and prune self-evictions;
4 for 𝑘 ∈ K do
5 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
6 for 𝑘 ∈ K do
7 assign 𝑇 ← 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
8 if 𝑇 = 𝑇𝑀 then
9 assign K← K \ {𝑘};

10 while self-eviction detected;
11 // probe collision with victim branch;
12 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑣𝑖𝑛𝑑 , 𝐷𝑉);
13 for 𝑘 ∈ K do
14 assign 𝑇 ′ ← 𝐵𝑇𝐵.𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘, 𝐷𝐴);
15 if 𝑇 ′ = 𝑇𝑀 then
16 assign G← G ∪ {𝑘};

Algorithm 4 and 5: Occupancy-Based Attacks. The gener-
alized steps for constructing the occupancy set are listed in Algo-
rithm 4 and Algorithm 5. We assume that the security domains
of the attacker and the victim are represented as {𝐷𝐴, 𝐷𝑉 } ∈ D,
and define {𝑇𝐻 ,𝑇𝑀 } ∈ T to represent observations of the 𝑣𝑎𝑙𝑖𝑑
and 𝑖𝑛𝑣𝑎𝑙𝑖𝑑/𝑚𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡 states, respectively. Let {𝑘0, 𝑘1, . . . } ∈ K
denote the set of branch addresses controlled by the attacker, 𝑋 in-
dicate the expected size of the occupancy set, and {𝑔0, 𝑔1, . . . } ∈ G
refer to the candidate occupancy set. Once the occupancy set is
constructed, the attacker can infer information about the victim
by monitoring the execution of the occupancy set {𝑔0, 𝑔1, . . . } ∈ G
and the victim’s branches {𝑣0, 𝑣1, . . . } ∈ V.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Side-Channel Attacks on Branch Predictors
	2.2 Existing Secure Branch Prediction Designs
	2.3 Microarchitectural Security Evaluation

	3 Modeling the Structure of Security-Oriented Branch Predictors
	3.1 Threat Model
	3.2 Defining Components and the Workflow
	3.3 Constructing Side-Channel Observations
	3.4 Implementing Existing Randomized Designs

	4 Fomulating Microarchitectural Side-Channel Attacks on Branch Predictors
	4.1 Reuse-Based Attacks
	4.2 Prune-Based Attacks
	4.3 Occupancy-Based Attacks
	4.4 Victim Secret Space

	5 Security Evaluation of Randomization-Based Secure Branch Predictors
	5.1 Quantification Metrics and Setup
	5.2 Reuse-Based Attack Evaluation
	5.3 Prune-Based Attack Evaluation
	5.4 Occupancy-Based Attack Evaluation
	5.5 Maximal Leakage: Single-Bit Secret Space
	5.6 Maximal Leakage: Multi-Bit Secret Space

	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Formalized Microarchitectural Attack Algorithms on Branch Predictors

