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The design philosophy of modern CPU is faster speeds and greater efficiency

Branch prediction unit (BPU) play a critical role in addressing control hazards

However, inherent sharing characteristic introduces side-channel attack surfaces

Background: Timing and Speculative Attacks
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Researchers have proposed secure speculation schemes and branch predictors

Randomization-based approaches stand out as more promising
make attacks significantly more challenging and effectively reduce leakage risks

maintain relatively low performance overhead compared to flush/partition techniques

Background: Secure Branch Prediction Designs
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However, these randomized approaches often fail to guarantee absolute security

shared states between attacker and victim threads still exist

Existing evaluation methods cannot accurately quantify leakage in such designs

CaSA, Metior, CacheFX, ...

Side-Channel Leakage Quantification Methods
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Background: Side-Channel Evaluation Methods
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How to build a leakage quantification framework for rand branch predictors?

Challenge
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Our model integrates index and content randomization functions: IRF and CRF

 IRF combines the branch instruction address with a randomization key K

CRF randomizes PHT counter or BTB content using a randomization key K

To further enhance security, distinct keys are assigned to different domains S
Randomized BPU
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Modeling: Defining Components and Workflow
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We define a timing observation model to capture timing and speculative attacks

Modeling: Constructing Timing Observations
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We instantiate 6 randomization-based secure branch predictor designs

We associate S and K with the security domain and the corresponding private keys

Our implementation incorporates IRF for PHT/BTB, CRF for PHT/BTB src/BTB dest

Modeling: Implementing Existing Secure Designs
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Attacker and victim
 Attacker: App, OS, VM, etc.

 Victim: App, OS, VM, TEE, etc.

Attacker’s strategy
 Find the proper branch instruction to mispredict specific PHT/BTB entry

 Probe timing differences of the target branch instruction

High-level of reuse-based attacks (timing leakage)

Fomulating: Reuse-Based PHT/BTB Attacks
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Attacker and victim
 Attacker: App, OS, VM, etc.

 Victim: App, OS, VM, TEE, etc.

Attacker’s strategy
 Find the proper branch instruction to mispredict specific PHT/BTB entry

 Probe timing differences of covert channels due to speculative execution

High-level of reuse-based attacks (speculative leakage)

Fomulating: Reuse-Based PHT/BTB Attacks
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Attacker’s strategy
 Construct eviction set for specific BTB set

 Probe timing differences of branch instructions

High-level of prune-based attacks

Fomulating: Prune-Based BTB Attacks
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Attacker’s strategy
 Filling the PHT/BTB branch predictor

 Probe timing differences of branch instructions

High-level of occupancy-based attacks

Fomulating: Occupancy-Based PHT/BTB Attacks
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Branch Accesses N: The total number of branch accesses required to achieve the attack

 Encompassing accesses in both the attacker's space and the victim's space

Collision Probability Pr: The probability of a collision between the attacker and victim

 The leakage of sensitive information across repeated trials

Maximal Leakage Lmax:  The maximum amount of information that can be leaked

 A relative measure of leakage by comparing the actual leakage to random guessing

Evaluation: Leakage Quantification Metrics
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We develop a software simulator with the following implementation strategy
 Component structure: define vector variables, lookup functions and update functions

 Timing observation: set return values of lookup functions, hit (1) or miss (0)

 IRF and CRF functions: implement get tag/counter for PHT, get set/tag/dest for BTB

Attack algorithms: collect statistics on branch accesses and timing observations

 Leakage calculation: use the collected data and the previously defined formulas

Evaluation: Leakage Quantification Methodology
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 IRF increases the complexity but the attacker can still generate branch conflicts

The CRF security relies on bit width, making encrypted BTB more secure than PHT

PHT reuse attacks (both timing and speculative) remain a major challenge

Evaluation: Reuse-Based Attacks

ASIA CCS’25

Branch Accesses N
Reuse-Based

Collision Probability Pr
Reuse-Based



16

The goal of IRF randomization is making eviction set construction difficult

Pruning-based strategies allow attackers to construct eviction sets

With a reasonable number of branch accesses for all existing randomized BTBs

Evaluation: Prune-Based Attacks
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The effectiveness of randomization appears to vanish when relaxing constraints

Despite different designs employing various random mapping or encryption

The attacker can easily construct occupancy sets that avoid self-conflicts

Evaluation: Occupancy-Based Attacks
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Multi-bit leakage: covert channel attacks based on occupancy strategies

PHT maximum leakage reaches 1.81/1.56 for 2-bit/3-bit saturating counter (4 iters)

BTB maximum leakage reaches 0.74 (1 iter), 1.22 (2 iters) and 1.87 (4 iters)

All existing designs remain vulnerable to PHT/BTB occupancy attack vectors

Evaluation: Maximal Leakage
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Developing more effective countermeasures
Hybrid designs: SassCache (S&P’23)

Non-deterministic designs: PhantomCache (NDSS’20)

Taking more attention on PHT security issues
 Remain the weakest link in current secure designs

 Particularly vulnerable to Spectre attacks

Discussion: Future Directions

ASIA CCS’25

SassCache Architecture
Giner et al. S&P’23

PhantomCache Architecture
Tan et al. NDSS’20

PHT Security Issues



20

Modeling: Components and Workflow of Randomized Secure Branch Predictors

Fomulating: Reuse-Based, Prune-Based and Occupancy-Based Attack Strategies

Evaluation: Leakage Quantification Metrics and Empirical Side-Channel Analysis

Conclusion
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 Develop a PHT and BTB branch predictor model focused on side-channel security
 Integrate indexing randomization and content randomization mechanisms
 Incorporate timing observation mechanisms of timing and speculative attacks

 Describe microarchitectural attacks targeting PHT entries, BTB entries, and BTB sets
 Define reuse-based, prune-based, and occupancy-based attack strategies
 Effectively evaluate the side-channel security properties within our framework

 Define branch access number, collision probability and maximal leakage metrics
 Demonstrate the effectiveness of our framework in quantifying side-channel leakage
 Underscore the necessity for stronger countermeasures against side-channel attacks
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