
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Modeling, Derivation, and Automated Analysis of
Branch Predictor Security Vulnerabilities

Quancheng Wang†, Ming Tang†∗, Ke Xu†, Han Wang†
† Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,

School of Cyber Science and Engineering, Wuhan University, Wuhan, 430072, China
{wangquancheng, m.tang, kexuwhu, han.wang}@whu.edu.cn

Abstract—With the intensification of microarchitectural side-
channel attacks targeting branch predictors, the security bound-
ary of computer systems and users’ security-critical data are
under serious threat. Since the root cause of these attacks is
the neglect of security issues in the microarchitecture design of
branch predictors, an analysis framework that can exhaustively
and automatically explore these concerns in the design phase
is imminent. In this paper, we propose a comprehensive and
automated evaluation framework for inspecting the security
guarantees of branch predictors at the microarchitecture design
stage. Our technique involves a three-step modeling approach
that abstractly characterizes 19 branch predictor states and 53
operations that could affect these states. Subsequently, we develop
a symbolic execution-based framework to investigate all three-
step combinations and derive 156 valid attack patterns against
branch predictors, including 89 novel attacks never considered
in the previous work. Finally, we apply our framework to 8
secure branch predictor designs and four typical hardware-
based countermeasures against speculative execution attacks
to evaluate their security capabilities. The result demonstrates
that these security branch predictors provide efficient security
guarantees and outperform those hardware-based alleviations
against speculative execution attacks, indicating that the security
branch predictors are promising in mitigating branch predictor
security vulnerabilities.

I. INTRODUCTION

In recent years, microarchitecture design has undergone
continuous optimization and improvement, resulting in sig-
nificant performance increases for modern processors. Caches
and TLBs reduce memory access latency and virtual memory
translation overhead, thus alleviating the performance bot-
tleneck between the CPU and memory. Additionally, tech-
niques such as out-of-order execution and branch prediction
improve instruction-level parallelism, further increasing the
performance of modern processors.

However, the researchers have found that the timing differ-
ences caused by these microarchitectural optimizations can be
exploited to construct microarchitectural timing side-channel
attacks [51] to leak sensitive information and cryptographic
keys of the victim processes. In particular, the Spectre at-
tack [40] and its variants [5], [42], [45], [49], [58], which
exploit the branch predictor to breach security boundaries
of computer systems, have attracted widespread attention
in academia and industry. Moreover, these branch predictor
attacks can cause more severe consequences than traditional

*Corresponding author.

side-channel attacks, such as stealing RSA encryption keys [3],
bypassing KASLR [25], and breaking the SGX security
boundary [17]. Therefore, it is crucial to analyze the security
of branch predictors in modern processors and mitigate the
security vulnerabilities of branch predictors to ensure the
confidentiality and integrity of computer systems.

Although researchers have proposed various analysis and
verification methods against microarchitectural attacks against
branch predictors [6], [15], [19], [28], [31]–[33], [46], [47],
[57], there are still several limitations in the previous work.
Most work focuses on software security, such as Spectec-
tor [31], KLEESpectre [57], and SpecuSym [33]. While these
methods model speculative execution at the software level and
analyze the code security against speculative attacks, they only
cover a subset of branch predictor security issues, are limited
to specific applications (e.g., cryptographic libraries), and can
only perform security analysis on known types of attacks.

Moreover, although Hu et al. [36] and He et al. [34]
construct attack models to analyze the security of branch pre-
dictors from the hardware perspective, these models only cover
known speculative attacks against branch predictors without
deriving new side-channel attacks against branch predictors,
such as BHI [5]. They also do not consider timing side-channel
attacks and covert-channel attacks against branch predictors,
which pose a real-world security threat to computer systems.

In addition, Deng et al. [20]–[22] propose a three-step mod-
eling approach to analyze security vulnerabilities in caches and
TLBs. They finally derive 88 timing-based attacks with 32
new attacks against caches and 24 timing-based attacks with
16 novel attacks against TLBs, highlighting the insufficiency
of analyzing only previously discovered security vulnera-
bilities, as there may be many unknown microarchitectural
side-channel attacks. Unfortunately, these methods cannot be
directly applied to branch predictors due to differences in
component designs and working principles.

To address these limitations, this paper proposes a com-
prehensive and automated security analysis framework for
verifying security guarantees of branch predictors at the mi-
croarchitecture design stage. We introduce a new modeling
approach for evaluating side-channel security properties of
branch predictors and leverage symbolic execution to derive all
potential security issues for a given branch predictor design.

We first analyze the fundamental workflow of the Pattern
History Table (PHT), Branch Target Buffer (BTB), Branch



History Buffer (BHB), and Return Stack Buffer (RSB), which
are the four main components of branch predictors in modern
processors. Then, we abstractly define 19 different states of
these four components and reduce the complexity of the subse-
quent analysis by abstracting the branch predictor components
to the minimum units (e.g., a single entry of the PHT). Based
on the abstracted 19 states of the branch predictor components,
we propose a three-step modeling approach against branch
predictors and model 53 operations of the attacker and the
victim that could affect the state of the branch predictor in the
three-step model, such as operations that change the state of
the branch predictor and that observe the timing differences.

Afterward, we build a prototype framework based on sym-
bolic execution to analyze all possible three-step combinations,
which takes the 53 operations as input and outputs all vulnera-
ble attack patterns. As a result, we derive 156 valid three-step
attack patterns against branch predictors, including 89 attacks
never considered in the previous work. Meanwhile, we also
categorize these attacks into four different types, including
hit-based internal interference attacks (IH), hit-based external
interference attacks (EH), miss-based internal interference at-
tacks (IM), and miss-based external interference attacks (EM),
based on timing information observed by the attacker and the
operations associated with the security-critical branches.

Finally, we model 8 existing secure branch predictor designs
[12], [16], [43], [52], [56], [64]–[66] proposed in academia
and conduct an automated security analysis of these designs
using our proposed security analysis framework. Among these
security branch predictors, Probabilistic Saturation Counter
(PSC) [64] and HyBP [66] are the most effective secure branch
predictors for mitigating PHT and BTB security vulnerabilities
under ideal circumstances, respectively. Then, HyBP [66] also
outperforms in mitigating known and newly derived attacks
among these security branch predictors. Furthermore, we
model four typical hardware countermeasures [39], [53], [60],
[62] against speculative execution attacks and compare them
with secure branch predictors. The evaluation result shows that
Two-Level Encryption [43], Noisy-XOR-BP [65], LS-BP [16],
and HyBP [66] can provide better security guarantees against
speculative execution attacks than these hardware defenses.

The main contributions of this paper are as follows:
• We propose a three-step modeling approach for evalu-

ating the security properties of branch predictors at the
microarchitecture design stage. Our technique abstractly
characterizes 19 branch predictor states and 53 operations
of the attacker and victim that could affect these states.

• We develop a comprehensive and automated evaluation
framework based on the proposed model that leverages
symbolic execution to analyze all potential three-step
combinations, yielding 156 valid attack patterns against
branch predictors, with 89 novel attacks never discovered.

• We apply our security analysis framework to 8 existing
secure branch predictor designs and four typical hardware
alleviations against speculative execution attacks, and the
results show that secure branch predictors are promising
solutions for enhancing the security of branch predictors.

II. BACKGROUND

In this section, we provide pertinent information on the
design of branch predictors in modern processors, existing mi-
croarchitectural attacks against branch predictors, and related
work on microarchitectural security analysis.

A. Overview of Branch Predictors

Branch predictors resolve pipeline stalls caused by control
hazards [35]. There is no performance loss if the prediction is
correct, and if the prediction is incorrect, the processor will roll
back to the correct branch path for execution [40]. Although
there are differences in the design details of branch predictors
for different types of processors, they primarily work with
similar principles and structures. Therefore, we provide an
overview of the Pattern History Table (PHT), Branch Target
Buffer (BTB), Branch History Buffer (BHB), and Return Stack
Buffer (RSB) that have security issues in modern processors
based on existing reverse-engineering works and attacks [27],
[38], [40], [42], [45], [63] on branch predictors.

Pattern History Table (PHT). Pattern History Table (PHT)
predicts the direction of conditional branches [40], and each of
its entries is typically a 2-bit finite state machine [35], where
two states indicate not-taken (00 and 01) and the other two
states denote taken (10 and 11).

Branch Target Buffer (BTB). Branch Target Buffer (BTB)
predicts the target address of a branch [40] and is organized
similarly to a set-associative cache, which predicts branch
targets based on set and tag matching [63]. Each entry in
the BTB contains the address of a branch instruction and the
target address of the branch instruction, both of which are
compressed by a hashing algorithm.

Branch History Buffer (BHB). Branch History Buffer
(BHB) records the history of the last few branches and is
usually implemented as a global shift register. In branch
prediction, the value in the BHB is logically manipulated with
the branch instruction’s address and used as an index to access
the PHT or BTB to predict the branch address [63].

Return Stack Buffer (RSB). Return Stack Buffer (RSB)
predicts the return address of function calls and is implemented
as a stack in modern processors. When a function is called,
the following return address is pushed into the RSB for future
prediction. Then, when a return instruction is executed, the
return address is popped out of the RSB as the predicted target
address [42], [45].

Predicting Target Address. The branch predictor predicts
the target address of branch instructions based on the PC value
and the state of the above four units. Figure 1 illustrates the
workflow for the prediction of different branch instructions.
Then, the PHT entry is updated after each conditional branch
prediction, and the BTB entry is updated after each branch
prediction for call and indirect branches. Moreover, the RSB
is updated after each call and return instructions. If the return
address is predicted based on the BTB, the BTB entry is also
updated after the return instruction. In addition, the BHB is
updated after each branch instruction for all the conditional,
unconditional, call, return, and indirect branches.



BHB

PHT

BTB

RSB

branch target

ind
ex

: h
ist
or
y

inst: uncond

inst: ret

inst: ind/call/ret

inst: con
d

inst: cond

inst: ind

Fig. 1. The workflow for the prediction of different branch instructions.

B. Microarchitectural Attacks against Branch Predictors

Side-channel attacks [44], [51] exploit unintentional infor-
mation leakage from computing devices or implementations
to infer sensitive information. Traditional side-channel at-
tacks mainly include electromagnetic side-channel attacks [4]
and power side-channel attacks [41]. Microarchitectural side-
channel attacks exploit optimization mechanisms introduced
in the processor microarchitecture (e.g., out-of-order execu-
tion, speculative execution, caching) to infer security-critical
information by observing the execution time of different
instructions or programs.

TABLE I
SUMMARY OF EXISTING MICROARCHITECTURAL SIDE-CHANNEL ATTACKS

AGAINST BRANCH PREDICTORS

Type Unit Attack Steps

TSCA

PHT
Template Attack [8], [9] A → V → A

BranchScope [27] A → V → A
Bluethunder [38] A → V → A

BTB Predicting Keys [1]–[3] A → V → A
JumpOverASLR [25] A → V → A

RSB Predicting Keys [13] A → V → A

TEA

PHT

Spectre V1 [40], [55] V → V → A
NetSpectre [49] V → V → A

SpectreRewind [29] V → V → A
BranchSpectre [18] V → V → A

Spec Interference [7] V → V → A
SpecHammer [54] V → V → A

PACMAN [48] V → V → A

BTB

Spectre V2 [40] A/V → V → A
SMoTherSpectre [11] A/V → V → A

SGXPectre [17] A/V → V → A
SpecROP [10] A/V → V → A

BHI [5] A → V → A
RetBleed [58] A → V → A

RSB Spectre V5 [42], [45] A → V → A

CCA PHT Residual State [24], [26] A → V → A
Contention [26], [37] A → V → A

• Attack Types: TSCA represents Timing Side-Channel Attack, TEA
represents Transient Execution Attack, and CCA represents Covert-
Channel Attack.

• Attack Steps: A represents the Attacker, and V represents the
V ictim. Especially, we use V to represent the sender of the covert
channel and A to represent the receiver.

According to the research perspective on branch predictor
vulnerabilities, microarchitectural side-channel attacks against
branch predictors can be classified into three types:

• Timing Side-Channel Attacks (TSCA) [44], [51]: this is
a passive attack in which the attacker steals confidential
data by observing the side timing information.

• Transient Execution Attacks (TEA) [14], [59]: this is an
active attack in which the attacker steals sensitive data
by unauthorized access.

• Covert-Channel Attacks (CCA) [51], [59]: this is an
active attack in which the attacker bypasses privilege
boundaries and transmits security-critical data by estab-
lishing a communication channel.

Table I summarizes the existing microarchitectural side-
channel attacks on branch predictors, their corresponding
attack types, and their three-step attack procedures.

C. Related Work

Symbolic execution is a well-known technique for verifying
the security of programs and is also widely used in microar-
chitecture side-channel attacks. Wang et al. [57] and Guo et
al. [33] validate the security of programs against speculative
execution attacks by implementing KLEE-based symbolic ex-
ecution prototype tools, namely KLEESpectre and SpecuSym,
respectively. Moreover, Guarnieri et al. [31] introduce a se-
mantic notion of “speculative non-interference” and develop
Spectector to verify the security of codes against Spectre V1
attacks. Fabian et al. [28] then extend Spectector to support
Spectre V5 detection by implementing novel speculative se-
mantics for return instructions. In addition, Daniel et al. [19]
propose a new relational symbolic execution framework for
security evaluation against speculative execution attacks.

Several works model the microarchitecture of modern pro-
cessors for security analysis from the hardware perspective.
Guanciale et al. [30] propose a comprehensive formal model
called Inspectre to model the behavior of out-of-order execu-
tion and speculative execution and then use this model to de-
rive three new speculative vulnerabilities. Then, He et al. [34]
define the concept of “security dependency” and propose an
attack graph model for reasoning about speculative attacks.
Moreover, Hu et al. [36] present a six-step modeling approach
to analyze 20 hardware defenses against speculative execution
attacks systematically. In addition, Yang et al. [61] introduce
a model-checking framework called Pensieve to verify the
security of existing hardware-based invisible countermeasures
against speculative execution attacks. However, these models
do not cover all timing side-channel attacks and covert-channel
attacks exploiting branch predictors, nor do they entirely derive
all potential speculative execution attacks.

Deng et al. [20]–[22] propose a three-step modeling ap-
proach to analyze security vulnerabilities in caches and TLBs.
By modeling possible memory operations of the attacker and
victim, they derive 88 timing-based attacks against caches
(including 32 new attack patterns) [20], [22] and 24 timing-
based attacks against TLBs (including 16 new attack pat-
terns) [21]. Moreover, Deutsch et al. [23] introduce a com-
prehensive model called Metior to evaluate existing hardware-
based mitigations against cache timing attacks and discover
unexplored microarchitectural leakages. Although these works



identify new timing-based attacks on caches or TLBs, they do
not consider branch predictors with numerous vulnerabilities.

III. MODELING BRANCH PREDICTOR STATES AND
CORRESPONDING OPERATIONS

In this section, we abstractly model all possible states and
corresponding operations of branch predictors according to the
working mechanism of each unit. Then, we propose a three-
step attack model for characterizing existing microarchitectural
side-channel attacks against branch predictors and further
derivation of all potential security vulnerabilities.

A. Threat Model and Assumptions

The microarchitecture side-channel attack against branch
predictors involves an attacker and a victim. In our threat
model, we use A and V to denote the attacker and victim
programs, both of which can execute branch instructions and
change the state of the branch predictor. The attacker and
the victim can run on the same logical core or two different
logical cores on the same processor. We also assume that the
attacker and the victim can be at the same privilege level (e.g.,
user mode) or different privilege levels (e.g., user mode and
kernel mode). In addition, the attacker can invoke the victim’s
branch instructions to mislead the branch predictor, i.e., the
malicious operation is executed by V but controlled by A, or
execute branch instructions in its own address space to poison
the branch predictor, i.e., the malicious operation is performed
and controlled by A.

Our threat model also makes other assumptions about the
abilities of the attacker and the victim:

• First, we assume that the victim executes some security-
critical branch instructions b, where the branch direction
depends on the secret the attacker wants to learn. For
example, when performing the RSA encryption function
of the OpenSSL cryptographic library, where the value
of the key bit (0 or 1) determines the direction of the
branch. The execution time of such branch instructions
is affected by branch prediction-related operations, which
may reveal information about the encryption key.

• Second, we suppose that the attacker knows the imple-
mentation of the victim’s program, such as the encryption
algorithm of the victim’s program and the location of the
branches related to the secret, but the attacker does not
know the specific confidential data.

• In addition, we also assume that the attacker understands
the state machine logic of the various constituent units
of the branch predictor. Although the attacker does not
have access to the internal state of the branch predictor,
it can measure the execution time of its or the victim’s
operations and determine whether the execution time is
fast or slow to infer the state of the branch predictor.

We consider three types of branch predictor vulnerabilities
in our threat model, including timing side-channel attack
(TSCA), transient execution attack (TEA), and covert-channel
attack (CCA). The difference between the transient execution
attack and the covert-channel attack is that the former is related

to the unauthorized transient execution of the branch predictor
and may use other covert channels to disclose secrets, i.e.,
the fast and slow in such attacks are not directly related
to the branch predictor. In contrast, the latter uses the branch
predictor as a covert channel to leak information, i.e., the fast
and slow in such attacks are directly related to the correct or
incorrect prediction of the branch predictor.

B. Modeling States of Branch Predictors

Since the state of each entry is independent of other entries
and the update logic is the same for each entry, we abstractly
model each type of branch predictor unit by considering only
a single entry for each branch predictor unit. Then, as a single
entry is the minimum component of each branch predictor unit,
a significant advantage of this approach is that it reduces the
complexity of the subsequent analysis. In addition, since the
BHB is only mixed with the PC value of the branch instruction
and does not affect the state of other branch predictor units, we
do not model the BHB separately but as an indexing approach
integrated with the PHT and BTB.

Assuming that Eval denotes the branch predictor entry E
is indexed by the value val, three possible ways of indexing
in the branch predictor may affect the state of E:

• pc denotes that the attacker exploits the same PC value
(the part used for indexing, not the entire address) as the
target branch val to pollute entry E. This type of indexing
exists in both the PHT and the BTB, so this may lead to
PHT or BTB entries being polluted.

• his denotes that entry E is indexed by a mixed value of
the PC value and the BHB value, and this operation may
cause the BHB value to be poisoned, which may cause
the entry of PHT or BTB to be polluted.

• alias denotes that a different index value indexes entry E
due to the hash collision in the BTB or the stack collision
in the RSB, and the index value is different from val,
which may cause the entry of BTB or RSB to be polluted.

Due to the limited capacity of the BTB or RSB, the target
entry E may also be evicted from the branch predictor unit,
and we use inv to denote this situation. Table II lists all 19
possible states of each entry in the branch predictor unit.

For a given branch instruction, every PHT entry has two
different states: valid and mispredict, where valid denotes
that the entry is valid in the PHT and the prediction is
correct; mispredict indicates that the entry exists in the PHT,
but the prediction is incorrect. We do not choose T (taken)
and NT (not taken) as the states because the attacker aims
to leverage timing penalties for misprediction rather than a
specific T/NT state. Our modeling avoids two symmetric
cases (T/T and NT/NT categorized as valid, T/NT and
NT/T classified as mispredict) to reduce the complexity of
the subsequent analysis. Moreover, each BTB entry has some
bits to store the branch type of the branch instruction, such
as call, return, or jump, making it infeasible for each branch
to pollute the branch target address of other instruction types
even if there is a hash collision. Unlike the PHT entry state, for
a given branch instruction, the BTB entry has three different



TABLE II
ALL POSSIBLE 19 STATES OF AN ENTRY IN THE BRANCH PREDICTORS

Unit Branch Entry State Description

PHT cond
Eval valid The prediction is correct.
Epc mispredict The prediction is incorrect.
Ehis mispredict The prediction is incorrect.

BTB

ind

Einv invalid The entry is not in the BTB.
Eval valid The prediction is correct.
Epc mispredict The prediction is incorrect.
Ehis mispredict The prediction is incorrect.
Ealias mispredict The prediction is incorrect.

call

Einv invalid The entry is not in the BTB.
Eval valid The prediction is correct.
Epc mispredict The prediction is incorrect.

Ealias mispredict The prediction is incorrect.

ret

Einv invalid The entry is not in the BTB.
Eval valid The prediction is correct.
Epc mispredict The prediction is incorrect.

Ealias mispredict The prediction is incorrect.

RSB ret
Einv invalid The entry is not in the RSB.
Eval valid The prediction is correct.
Ealias mispredict The prediction is incorrect.

• Eval denotes entry E is indexed by the valid value val.
• Einv denotes entry E is evicted from the BTB/RSB.
• Epc/Ehis/Ealias denotes entry E is poisoned by pc/his/alias.

states: invalid, valid, and mispredict, where invalid denotes
that the entry does not exist in the BTB and cannot be used
for prediction; valid means that the entry is valid in the BTB
and the prediction is correct; and mispredict indicates that
the entry exists in the BTB, but the prediction is incorrect. In
addition, RSB entries are only pushed into the RSB when the
call instruction is executed, and there are also three different
states for a given branch instruction: invalid, valid, and
mispredict. The invalid state suggests that the RSB entry
does not exist in the RSB; the valid state means that the
RSB entry is valid, and the return address is correct; and the
mispredict state denotes that the RSB entry exists, but the
return address is incorrect.

C. Three-Step Attack Model

After modeling the state of the branch predictor and the op-
eration of the attacker and the victim, we propose a three-step
attack model against the branch predictor and use {Step 1 →
Step 2 → Step 3} to denote the three-step combination of
operations. In the first step, a branch operation is performed
to set an entry of any branch predictor (PHT/BTB/RSB) to
a known initial state (e.g., to set the saturation counter of
an entry of the PHT to taken or to flush a block from the
BTB). Then, in the second step, another branch operation is
performed to change the state of the corresponding entry of the
branch predictor unit from the initial state. Moreover, in the
third step, a timing observation operation is performed through
the last branch operation or other covert channels. The attacker
can infer the secret data from the timing observation operation.

Then, we prove that all the microarchitectural side-channel
attacks against the branch predictor can be modeled as the
three-step attack model:

• First, the attacker sets the state of the branch predictor
to a known initial state to ensure that the attack can

be executed correctly. In addition, a branch predictor
entry E can only have one state at a time, and it only
takes a branch sequence b (including {b1, b2, · · · , bn})
on that entry to change the state of E to the target
state. Therefore, we can reduce these operations to an
abstracted operation b, the only operation needed to set
the initial state of the branch predictor in our model.

• Second, the state of the branch predictor entry E should
be changed to a different state by multiple branch
operations {b′1, b′2, · · · , b′n} to leak secret information.
Similarly, we can reduce these operations to an abstracted
operation b′ and model this operation as the second step
of the attack.

• Finally, another essential step in the attack process is that
the attacker infers the state of the branch predictor entry
E or the leakage of secret information due to incorrect
prediction. For the former, the attacker can observe the
state of E through one abstracted branch operation b′′.
For the latter, the attacker can measure the leakage of
secret information through other covert channels, and we
model this operation as cc. Therefore, we can model the
third step of the attack as b′′ or cc.

• All existing microarchitectural side-channel attacks on
branch predictors can be modeled as the three-step attack
model {b → b′ → b′′/cc}.

Afterward, we model all 53 possible operations of attackers
and victims that could affect the state of the branch predictor
in the three-step attack model, as listed in Table III. We use
A and V to denote the attacker’s and the victim’s operations,
respectively. Moreover, we use A⋆ or V⋆ to denote that the
attacker or the victim does not operate on the target branch
predictor entry in this step. We then use Acc to denote the
attacker’s operation to observe the state of the covert channel
other than the branch predictors, which exists only in the third
step of the transient execution attack.

Then, assuming that the target entry corresponds to the
security-critical data (e.g., the encryption key), we use Aval

or Vval to denote the operation to set this target entry to
valid (i.e., to access the security-critical data). We also use
Ainv/Vinv to denote the operation to set the target entry to
invalid by evicting the target entry from the branch pre-
dictor. In addition, we use Apc/Vpc/Ahis/Vhis/Aalias/Valias

to denote the operation to change the state of the target
entry to mispredict by the branch instruction with index
pc/his/alias.

In both timing side-channel attacks and covert-channel
attacks, each step in the model represents the operation that
changes the state of a branch predictor unit entry. For example,
in the BranchScope attack [27] ({Apc → Vval → Apc}), the
attacker first trains the PHT branch predictor and sets the state
to mispredict (e.g., taken) in Step 1. Then in Step 2, the
victim executes several branch instructions to change the state
of the corresponding PHT entry to valid (e.g., from taken to
not taken). Finally, in Step 3, the attacker observes the timing
difference through the execution time of the same branch
instruction in Step 1 to learn the victim’s execution pattern.



TABLE III
ALL 53 POSSIBLE OPERATIONS IN THE THREE-STEP ATTACK MODEL

Unit Branch Operation State Description

PHT cond

Acc not changed covert channel
A⋆ or V⋆ not changed no operation

Aval or Vval valid make the entry valid
Apc or Vpc mispredict mispredict the entry
Ahis or Vhis mispredict mispredict the entry

BTB

ind

Acc not changed covert channel
A⋆ or V⋆ not changed no operation

Ainv or Vinv invalid evict the entry
Aval or Vval valid make the entry valid
Apc or Vpc mispredict mispredict the entry
Ahis or Vhis mispredict mispredict the entry

Aalias or Valias mispredict mispredict the entry

call

Acc not changed covert channel
A⋆ or V⋆ not changed no operation

Ainv or Vinv invalid evict the entry
Aval or Vval valid make the entry valid
Apc or Vpc mispredict mispredict the entry

Aalias or Valias mispredict mispredict the entry

ret

Acc not changed covert channel
A⋆ or V⋆ not changed no operation

Ainv or Vinv invalid evict the entry
Aval or Vval valid make the entry valid
Apc or Vpc mispredict mispredict the entry

Aalias or Valias mispredict mispredict the entry

RSB ret

Acc not changed covert channel
A⋆ or V⋆ not changed no operation

Ainv or Vinv invalid evict the entry
Aval or Vval valid make the entry valid

Aalias or Valias mispredict mispredict the entry

In transient execution attacks, the first two steps of the
model are still the operation that changes the state of a branch
predictor unit entry. However, the third step of the model is
other operations that observe the state of other covert channels
since the covert channel is not branch prediction related. For
example, in the Spectre attack [40] ({Vpc → Vval → Acc}),
the attacker first triggers the victim into training the PHT
branch predictor with in-bounds values and sets the state to
mispredict (the prediction is wrong if the input is out-of-
bounds) in Step 1. Then, in Step 2, the attacker sends the
victim an out-of-bounds value and triggers unauthorized access
to sensitive data. Finally, in Step 3, the attacker observes the
timing difference through a microarchitectural covert channel
(e.g., caches, TLBs) to infer the sensitive data.

As mentioned earlier, since the entries of each branch
predictor unit are updated according to the same state machine
logic, it is sufficient to consider only a single entry since it
is the minimum component of the branch predictor. Although
different branch predictor implementations involve different
address-to-entry mapping functions, this does not affect the
three-step model for a single entry. Furthermore, these differ-
ences in mapping functions may make it more difficult for
attackers and victims to access the same entry in an actual
attack, but the attacker can still launch an attack in this case.

IV. DERIVATION OF ALL SECURITY VULNERABILITIES
AGAINST BRANCH PREDICTORS

In this section, we construct a symbolic execution-based
security analysis framework based on the proposed three-

step attack model and the operation types of the attacker and
the victim. We also introduce vulnerability specifications for
deriving valid attack patterns and reduction rules for reducing
the number of redundant vulnerabilities. Finally, we derive and
categorize all potential branch predictor vulnerabilities.

A. Three-Step Branch Predictor Simulator

Three-Step Simulator. We develop a three-step branch
predictor simulator, where each step represents a possible
operation of the attacker or the victim, and analyze valid attack
patterns based on the attacker’s observations (branch timing
or covert channel) in the third step. The three-step branch
predictor simulator is implemented in Rust, where the input
of the simulator is all 53 possible operations of the attacker
and the victim in the three-step attack model, and the output
is whether the three-step attack pattern is valid or not for each
three-step combination. According to our previous modeling
of branch predictors, there are 9 ∗ 9 ∗ 9 = 729 different three-
step combinations for the PHT, 13 ∗ 13 ∗ 13 + 11 ∗ 11 ∗ 11 +
11 ∗ 11 ∗ 11 = 4859 three-step combinations for BTB, and
9∗9∗9 = 729 three-step combinations for RSB. Thus, there are
6317 different three-step patterns under our modeling criteria.

Three-Step BP 
Simulator

(6317 three-step combinations)

9 ops for PHT

13 ops for BTB (ind)

11 ops for BTB (call)

11 ops for BTB (ret)

9 ops for RSB

Reduction Rules

Vulnerability Specification

30 vuls for BTB (call)

30 vuls for BTB (ret)

12 vuls for RSB

56 vuls for BTB (ind)

28 vuls for PHT

OUTPUTINPUT

Fig. 2. The progress of finding vulnerabilities with the three-step branch
predictor simulator.

State of Branch Predictor Entry. In the branch predictor
simulator, we define a current state for the target branch
predictor entry and assume that the initial state of the entry
is unknown. Then, while each step of the three-step com-
bination is executed in turn, the state of the target entry is
updated according to the operation type based on Table III.
For example, if the attacker performs Apc/Vpc, the state of
the target entry is updated to mispredict, and if the attacker
performs Aval/Vval, the state of the target entry is updated to
valid, and if the attacker performs Acc/A⋆, the state of the
target entry is not updated.

Path Extension. For the security-critical branch operation
Aval/Vval, we extend it to two different states, one to update
the branch predictor state and one to not update the branch
predictor state. In addition, if the first two steps are the
security-critical branch operation Aval/Vval, we only extend
the latter operation with two different states. Moreover, since
we consider the third step to be the timing observation step,
we do not extend the states in this step even if the operation
is Aval/Vval. Therefore, for the three-step combinations that
contain Aval/Vval, there are two different three-step execution



paths, and we use the attacker’s ability to observe the timing
difference between these two paths as the judging standard for
whether it is a valid attack pattern.

For both timing side-channel attacks and covert-channel
attacks, if the branch prediction in the third step is correct
(e.g., performing Vval when the entry is valid, performing Apc

when the entry is mispredict), the three-step path is marked
as fast. If the branch prediction in the third step is incorrect
or the target entry state is invalid, we characterize the three-
step path as slow. And if the target entry state is unknown
in the third step, the three-step path is marked as unknown.

In addition, for transient execution attacks, we assume the
covert channel is always the fast path after encoding the
secret data. Thus, if the state of the target entry is mispredict
when performing the security-critical branch operation Vval,
the three-step path is marked as fast. Then, if the state of
the target entry is valid or invalid when performing Vval,
the three-step path is marked as slow. Moreover, if the state
of the target entry is unknown when performing Vval, the
three-step path is marked as unknown.

Reduction Rules. We also develop some reduction rules to
reduce the analytical complexity of the three-step simulator
and minimize the output list of valid three-step combinations.
A three-step combination will be reduced if it satisfies one of
the following rules:

• First, since the attacker cannot access the security-critical
branch in our threat model, we reduce all three-step
combinations containing Aval. And since the attacker
observes the timing difference between two execution
paths to identify the security vulnerabilities, and only the
security-critical operation Vval can extend two different
execution paths, we also reduce all three-step combina-
tions that do not contain Vval.

• Second, if two successive operations are of the same type
and neither is a security-critical operation Vval, these two
steps can be reduced to the latter operation. For example,
if the three-step combination is {Apc → Apc → Vval},
then this pattern can be reduced to {A⋆ → Apc → Vval}.

• Moreover, if Acc occurs in the first or second step,
this step can be reduced to A⋆ because the transient
execution cannot occur with only one branch operation.
For example, if the three-step combination is {Acc →
Apc → Vval}, then this combination can be reduced to
{A⋆ → Apc → Vval}.

• Furthermore, if A⋆ or V⋆ occurs in the second or third
step, which means that the attacker or the victim does
not perform any operation, then we can swap it to the
previous step of the three-step combination by the swap
law of adjacent operations. Then, since A⋆ or V⋆ does
not perform operations related to the target entry and
update the prediction state of the entry, we can reduce
both operations to ⋆ uniformly. For example, if the three-
step combination is {Apc → A⋆/V⋆ → Vval}, then this
combination can be reduced to {⋆ → Apc → Vval}.

Then, we apply these four reduction rules in our three-step
branch predictor simulator and obtain the list of all valid three-

step attack patterns.
Vulnerability Specification. Finally, we perform vulnera-

bility identification for all three-step combinations where two
execution paths exist, with the following specification:

• V ulnerable: If the attacker can successfully distinguish
the timing of two paths when performing the timing
observation operation in the third step, i.e., one path is
marked as fast and the other path is marked as slow,
then we consider this three-step combination vulnerable.

• Not V ulnerable: If the attacker fails to distinguish the
timing of the two paths during the timing observation
operation in the third step, i.e., both paths are marked as
fast, slow, or unknown, we consider that this three-step
combination has no vulnerability at this time. If one path
is marked as unknown while the other path is marked as
fast or slow, i.e., the attacker may not be able to observe
the timing difference in this three-step combination, we
consider this pattern to be secure as well.

According to this specification, we can determine whether a
three-step combination is vulnerable. And we only consider the
three-step combinations in which the attacker can distinguish
the timing differences created by the security-critical branch
instruction as vulnerable.

Extensibility. Our three-step branch predictor simulator can
also be extended to analyze the security vulnerabilities of new
branch predictor mechanisms. For example, if a new design
introduces new branch predictor states and corresponding
operations, we can model these states and operations according
to our modeling rules. Then, we can embed these operations
into the three-step simulator and modify the state update
constraints, path extension logic, and reduction rules. Finally,
we can derive security vulnerabilities for the new design
through the extended three-step branch predictor simulator.

B. Derivation and Categorization of Vulnerabilities

Based on our reduction rules and the vulnerability specifica-
tion, we derive a total of 156 different security vulnerabilities
using the three-step branch predictor simulator, including 28
conditional branch prediction vulnerabilities for the PHT, 56
indirect branch prediction vulnerabilities for the BTB, 30 call
instruction prediction vulnerabilities for the BTB, 30 return
address prediction vulnerabilities for the BTB, and 12 return
address prediction vulnerabilities for the RSB.

Table IV lists all 156 three-step attack patterns against
branch predictors. Among them, only 67 attack patterns corre-
sponding to 9 types of attacks (other types of attacks listed in
Table I can be reduced to these types) are those already found
in previous studies, including four attack types against the
PHT (BranchScope [27], Bluethunder [38], Spectre V1 [40],
and BranchSpectre [18]), three attack types against the BTB
(Predicting Keys [1]–[3], Spectre V2 [40], and BHI [5]), and
two attack types against the RSB (Predicting Keys [13] and
Spectre V5 [42], [45]). The remaining 89 attack patterns are
all newly discovered in our study, including 16 new attack
patterns against conditional branches of the PHT, 36 new
attack patterns against indirect branches of the BTB, 15 new



TABLE IV
ALL 156 DERIVED SECURITY VULNERABILITIES AGAINST BRANCH PREDICTORS

Unit Step1 Step2 Step3 Category Type Attack Step1 Step2 Step3 Category Type Attack

PHT

Vval Apc Vval (slow) EM TSCA/CCA new Vval Vpc Vval (slow) IM TSCA/CCA new
Vval Ahis Vval (slow) EM TSCA/CCA new Vval Vhis Vval (slow) IM TSCA/CCA new
Apc Vval Vval (fast) IH TSCA/CCA (1) Apc Vval Apc (slow) EM TSCA/CCA (1)
Apc Vval Vpc (slow) IM TSCA/CCA (1) Apc Vval Ahis (slow) EM TSCA/CCA (1)
Apc Vval Vhis (slow) IM TSCA/CCA (1) Vpc Vval Vval (fast) IH TSCA/CCA new
Vpc Vval Apc (slow) EM TSCA/CCA new Vpc Vval Vpc (slow) IM TSCA/CCA new
Vpc Vval Ahis (slow) EM TSCA/CCA new Vpc Vval Vhis (slow) IM TSCA/CCA new
Ahis Vval Vval (fast) IH TSCA/CCA (2) Ahis Vval Apc (slow) EM TSCA/CCA (2)
Ahis Vval Vpc (slow) IM TSCA/CCA (2) Ahis Vval Ahis (slow) EM TSCA/CCA (2)
Ahis Vval Vhis (slow) IM TSCA/CCA (2) Vhis Vval Vval (fast) IH TSCA/CCA new
Vhis Vval Apc (slow) EM TSCA/CCA new Vhis Vval Vpc (slow) IM TSCA/CCA new
Vhis Vval Ahis (slow) EM TSCA/CCA new Vhis Vval Vhis (slow) IM TSCA/CCA new
Apc Vval Acc (fast) EH TEA new Vpc Vval Acc (fast) EH TEA (3)
Ahis Vval Acc (fast) EH TEA new Vhis Vval Acc (fast) EH TEA (4)

BTB
(ind)

Ainv Vval Vval (fast) IH TSCA/CCA (1) Vinv Vval Vval (fast) IH TSCA/CCA new
Vval Apc Vval (slow) EM TSCA/CCA new Vval Vpc Vval (slow) IM TSCA/CCA new
Vval Ahis Vval (slow) EM TSCA/CCA new Vval Vhis Vval (slow) IM TSCA/CCA new
Vval Aalias Vval (slow) EM TSCA/CCA new Vval Valias Vval (slow) IM TSCA/CCA new
Apc Vval Vval (fast) IH TSCA/CCA (1) Apc Vval Apc (slow) EM TSCA/CCA (1)
Apc Vval Vpc (slow) IM TSCA/CCA (1) Apc Vval Ahis (slow) EM TSCA/CCA (1)
Apc Vval Vhis (slow) IM TSCA/CCA (1) Apc Vval Aalias (slow) EM TSCA/CCA (1)
Apc Vval Valias (slow) IM TSCA/CCA (1) Vpc Vval Vval (fast) IH TSCA/CCA new
Vpc Vval Apc (slow) EM TSCA/CCA new Vpc Vval Vpc (slow) IM TSCA/CCA new
Vpc Vval Ahis (slow) EM TSCA/CCA new Vpc Vval Vhis (slow) IM TSCA/CCA new
Vpc Vval Aalias (slow) EM TSCA/CCA new Vpc Vval Valias (slow) IM TSCA/CCA new
Ahis Vval Vval (fast) IH TSCA/CCA new Ahis Vval Apc (slow) EM TSCA/CCA new
Ahis Vval Vpc (slow) IM TSCA/CCA new Ahis Vval Ahis (slow) EM TSCA/CCA new
Ahis Vval Vhis (slow) IM TSCA/CCA new Ahis Vval Aalias (slow) EM TSCA/CCA new
Ahis Vval Valias (slow) IM TSCA/CCA new Vhis Vval Vval (fast) IH TSCA/CCA new
Vhis Vval Apc (slow) EM TSCA/CCA new Vhis Vval Vpc (slow) IM TSCA/CCA new
Vhis Vval Ahis (slow) EM TSCA/CCA new Vhis Vval Vhis (slow) IM TSCA/CCA new
Vhis Vval Aalias (slow) EM TSCA/CCA new Vhis Vval Valias (slow) IM TSCA/CCA new

Aalias Vval Vval (fast) IH TSCA/CCA (1) Aalias Vval Apc (slow) EM TSCA/CCA (1)
Aalias Vval Vpc (slow) IM TSCA/CCA (1) Aalias Vval Ahis (slow) EM TSCA/CCA (1)
Aalias Vval Vhis (slow) IM TSCA/CCA (1) Aalias Vval Aalias (slow) EM TSCA/CCA (1)
Aalias Vval Valias (slow) IM TSCA/CCA (1) Valias Vval Vval (fast) IH TSCA/CCA new
Valias Vval Apc (slow) EM TSCA/CCA new Valias Vval Vpc (slow) IM TSCA/CCA new
Valias Vval Ahis (slow) EM TSCA/CCA new Valias Vval Vhis (slow) IM TSCA/CCA new
Valias Vval Aalias (slow) EM TSCA/CCA new Valias Vval Valias (slow) IM TSCA/CCA new
Apc Vval Acc (fast) EH TEA (2) Vpc Vval Acc (fast) EH TEA (2)
Ahis Vval Acc (fast) EH TEA (3) Vhis Vval Acc (fast) EH TEA new
Aalias Vval Acc (fast) EH TEA (2) Valias Vval Acc (fast) EH TEA (2)

BTB
(call/ret)

Ainv Vval Vval (fast) IH TSCA/CCA (1) Vinv Vval Vval (fast) IH TSCA/CCA new
Vval Apc Vval (slow) EM TSCA/CCA new Vval Vpc Vval (slow) IM TSCA/CCA new
Vval Aalias Vval (slow) EM TSCA/CCA new Vval Valias Vval (slow) IM TSCA/CCA new
Apc Vval Vval (fast) IH TSCA/CCA (1) Apc Vval Apc (slow) EM TSCA/CCA (1)
Apc Vval Vpc (slow) IM TSCA/CCA (1) Apc Vval Aalias (slow) EM TSCA/CCA (1)
Apc Vval Valias (slow) IM TSCA/CCA (1) Vpc Vval Vval (fast) IH TSCA/CCA new
Vpc Vval Apc (slow) EM TSCA/CCA new Vpc Vval Vpc (slow) IM TSCA/CCA new
Vpc Vval Aalias (slow) EM TSCA/CCA new Vpc Vval Valias (slow) IM TSCA/CCA new

Aalias Vval Vval (fast) IH TSCA/CCA (1) Aalias Vval Apc (slow) EM TSCA/CCA (1)
Aalias Vval Vpc (slow) IM TSCA/CCA (1) Aalias Vval Aalias (slow) EM TSCA/CCA (1)
Aalias Vval Valias (slow) IM TSCA/CCA (1) Valias Vval Vval (fast) IH TSCA/CCA new
Valias Vval Apc (slow) EM TSCA/CCA new Valias Vval Vpc (slow) IM TSCA/CCA new
Valias Vval Aalias (slow) EM TSCA/CCA new Valias Vval Valias (slow) IM TSCA/CCA new
Apc Vval Acc (fast) EH TEA (2) Vpc Vval Acc (fast) EH TEA (2)

Aalias Vval Acc (fast) EH TEA (2) Valias Vval Acc (fast) EH TEA (2)

RSB

Ainv Vval Vval (fast) IH TSCA/CCA (1) Vinv Vval Vval (fast) IH TSCA/CCA new
Vval Aalias Vval (slow) EM TSCA/CCA new Vval Valias Vval (slow) IM TSCA/CCA new

Aalias Vval Vval (fast) IH TSCA/CCA (1) Aalias Vval Aalias (slow) EM TSCA/CCA (1)
Aalias Vval Valias (slow) IM TSCA/CCA (1) Valias Vval Vval (fast) IH TSCA/CCA new
Valias Vval Aalias (slow) EM TSCA/CCA new Valias Vval Valias (slow) IM TSCA/CCA new
Aalias Vval Acc (fast) EH TEA (2) Valias Vval Acc (fast) EH TEA new

• PHT: (1) BranchScope [27]; (2) Bluethunder [38]; (3) Spectre V1 [40]; (4) BranchSpectre [18].
• BTB: (1) Predicting Keys [1]–[3]; (2) Spectre V2 [40]; (3) BHI [5].
• RSB: (1) Predicting Keys [13]; (2) Spectre V5 [42], [45].



attack patterns against call instructions of the BTB, 15 new
attack patterns against return addresses of the BTB, and 7 new
attack patterns against return addresses of the RSB.

We then further categorize the derived three-step attack
patterns based on whether the timing observed by the attacker
in the observation phase is fast or slow and whether the
attacker or the victim performs the operations associated with
the security-critical branches and observations. If the attacker
observes the fast path for a path that accesses the security-
critical branch, we consider this a hit-based attack pattern (H)
and, conversely, a miss-based attack pattern (M). In addition,
if the second and third steps of the three-step attack pattern are
both performed by the victim, i.e., the operations of this attack
on the security-critical branch do not involve the attacker’s
operations on the branch predictor, then we consider it an
internal interference attack (I). Otherwise, if both the attacker’s
and the victim’s operations are present in the second and
third steps, we categorize these attack patterns as external
interference attacks (E). Based on these two dimensions, we
categorize the derived attack patterns into 28 hit-based internal
interference (IH) attacks, 20 hit-based external interference
(EH) attacks, 54 miss-based internal interference (IM) attacks,
and 54 miss-based external interference (EM) attacks.

In internal interference attacks, the attacker infers sensitive
information by observing one or more branches in the vic-
tim’s code, meaning that either the attacker can trigger the
victim to execute the to-be-observed branch or the victim
itself can perform these conflicting branches. Such attacks are
more feasible if the attacker can observe the victim’s overall
execution timing or the timing of secret branches. External
interference attacks require the attacker to construct branches
that conflict with the victim’s security-critical branches (except
for speculative attacks) and to be able to observe the timing
of the conflict branches, secret branches, or covert channels,
making this type of attack somewhat more common.

Afterward, we further analyze the characteristics of the
derived attacks from the perspective of different poisoning
operations. First, pc-based mistraining operations(Apc/Vpc)
populate the target entry by repeatedly executing the same
branch, which has a higher poisoning success rate and a lower
noise. Meanwhile, performing Vpc operations in the victim’s
address space does not require the attacker to make address
collisions, so this poisoning approach has a higher chance
of being exploited. Second, his-based(Ahis/Vhis) and alias-
based(Aalias/Valias) poisoning operations have lower success
rates because the former is susceptible to noise from other
branches, the latter requires the attacker to construct collision
branches, making it more difficult to exploit. Compared to
pc-based poisoning, these two types are more practical to
be implemented in the attacker’s carefully designed code.
In addition, inv-based misleading operations(Ainv/Vinv) are
similar to the ”Prime” operation in cache attacks, i.e., the
attacker fills in the target entries by executing a large number
of branches mapped to the same set, which also has a high
success rate and low noise. Our subsequent case study in
Section IV-D also demonstrates that pc-based misleading is

more effective than his-based mistraining.
Additionally, we find that many new attacks poison branch

predictors via the victim’s code, while most existing attacks
rely on the attacker’s code to mislead branch predictors.
Therefore, it is possible to conduct code searches on exist-
ing cryptographic libraries according to our proposed three-
step model to investigate whether these new attacks can be
launched in real-world scenarios. For those new variants that
can still mislead branch predictors with the attacker’s code,
we will demonstrate the practicality by launching an attack
on OpenSSL through a case study in Section IV-E.

C. Case Study I: Extending Modeling Methodology to TAGE

To demonstrate the extensibility of our modeling methodol-
ogy, we apply our three-step model to the 5-component TAGE
branch predictor [50]. Figure 3 shows the modeling of the
TAGE branch predictor.

T1

H H

pc his1

=?

T0 T2

H H

pc his2

=?

T3

H H

pc his3

=?

T4

H H

his4pc

=?

pc
TAGE Op State

T1

Apc1
Vpc1
Ahis1
Vhis1

mispredict1
mispredict1
mispredict1
mispredict1

T2

Apc2
Vpc2
Ahis2
Vhis2

mispredict2
mispredict2
mispredict2
mispredict2

T3

Apc3
Vpc3
Ahis3
Vhis3

mispredict3
mispredict3
mispredict3
mispredict3

T4

Apc4
Vpc4
Ahis4
Vhis4

mispredict4
mispredict4
mispredict4
mispredict4

TAGE Op State

Whole
T1~T4

Apc’
Vpc’
Ahis’
Vhis’

mispredict’
mispredict’
mispredict’
mispredict’

Fig. 3. Structure and modeling of the 5-component TAGE branch predictor.

One modeling approach is to model the tagless table as a
unit and four tagged tables as an entire unit. For the tagless
table, Apc/Vpc can be used to change the state of the target
entry to mispredict as our simplified PHT. For the abstracted
tagged table, Apc′/Vpc′/Ahis′/Vhis′ can be used to pollute
the target entry. Since the tagless table and the tagged table
are independent of each other, we also extend them with a
new mispredict′ state to avoid state confusion in the first and
third steps using different tables. Finally, we derive 34 attack
patterns against TAGE in this modeling approach.

Another modeling approach is to model each tagged table
as a unit, adding 16 variants of Apc/Vpc/Ahis/Vhis operations
and 4 variants of mispredict states are added for each tagged
table. We then extend the states, operations, and state update
constraints of the three-step simulator to support this modeling
approach. Compared to abstracting four tagged tables as a
whole, this modeling method can capture more accurate state
changes in each tagged table, and we derive 106 attack patterns
in this modeling approach.

D. Case Study II: Proof-of-Concept for Derived Attacks

To demonstrate the feasibility of our discovered variants, we
implement proof-of-concept for a novel Vpc-based attack and
a novel Vhis-based attack. For Vpc-based attacks, we perform



the same branch in the victim’s address space and mislead the
PHT to taken. Then, we trigger the secret-dependent branch
Vval twice in the victim’s address space and observe the timing
of the second branch to infer the secret information. For Vhis-
based attacks, we perform the same branch with different
outcomes in the victim’s address space to activate two-level
branch prediction. We then execute several branches with the
same source and destination addresses in the victim’s address
space to poison the branch history. Finally, we trigger the
target branch Vval four times in the victim’s address space
and observe the timing to infer the secret information.

TABLE V
EVALUATION OF Vpc-BASED AND Vhis-BASED PHT ATTACK

Variant Configuration Resolution
(Cycles)

Capacity
(Kbps)

Vpc-based PHT Attack
(Vpc → Vval → Vval)

Intel Core i5-1135G7
(TigerLake, WSL2) 92 vs 108 865.711

Intel Core i7-12700
(AlderLake, Arch) 69 vs 83 925.482

Vhis-based PHT Attack
(Vhis → Vval → Vval)

Intel Core i5-1135G7
(TigerLake, WSL2) 91 vs 114 690.745

Intel Core i7-12700
(AlderLake, Arch) 67 vs 83 734.140

We prove the viability of these two attacks by assessing their
channel capacity on two Intel CPUs through the transmission
of random “0” and “1” bits repeated 1,000,000 times. As
depicted in Table V, the results indicate that both variants
can effectively exploit vulnerabilities, enabling the leakage of
sensitive information with a substantial bandwidth (865+ Kbps
for the Vpc-based PHT attack and 690+ Kbps for the Vhis-
based PHT attack).

E. Case Study III: Attacking OpenSSL with Novel Variants

Previous study [11] shows that EV P EncryptUpdate()
function in libcrypto library of OpenSSL 1.1.1b is vulnerable
to branch predictor attacks. We then demonstrate the practi-
cality of a novel timing-based BTB attack variant ({Vval →
Apc → Vval}) to recover the LSB of the first bytes exploiting
the same vulnerability.

0 20 40 60 80 100
Loops

500

600

700

C
yc
le
s

LSB=0
LSB=1
threshold

Fig. 4. Recovering LSB in OpenSSL with a novel timing-based BTB attack.

We implement a proof-of-concept attack on Intel Core i7-
12700 consisting of three steps. First, the attacker measures
the threshold execution timing of Vval operation according
to branch predictor hit and miss. Then, the attacker conducts

the branch target injection with Apc operation to mislead the
indirect branch in the libcrypto library, which will result in
branch interference in Vval (hit for value “1” and miss for
value “0”). Finally, the attacker triggers the victim to execute
Vval and measures the execution timing to infer the target LSB
value. We repeat the attack 100 times and the evaluation result
shown in Figure 4 indicates that the attacker can recover the
correct LSB value with this variant.

V. AUTOMATED SECURITY ANALYSIS OF EXISTING
SECURE BRANCH PREDICTORS

In this section, we first apply our symbolic execution-based
security analysis framework to modeling 8 existing secure
branch predictors [12], [16], [43], [52], [56], [64]–[66] and
conducting an automated security analysis of these designs.
Then, we also evaluate their effectiveness in mitigating spec-
ulative execution attacks on branch predictors by comparing
them with four typical hardware-based speculative execution
countermeasures.

A. Modeling Existing Secure Branch Predictors

Since all the potential three-step attack patterns we derive do
not contain Aval/A⋆/V⋆ operations, we only need to consider
the remaining 38 possible operations in the following analysis.
We also assume that RSB vulnerabilities are protected by RSB
refilling mechanism [42], which flushes the RSB entries during
the context switch. Then, we model the operations of the
attacker and victim in the three-step model for each design.

We analyze all operations of the attacker and victim in the
three-step model for each secure branch predictor and reduce
the operations that their secure design can prevent with the
following reduction rules:

• Ainv/Vinv: If the attacker cannot evict the target entry
from the branch predictor using branch instructions in
the attacker/victim’s address space, then we can reduce
the Ainv/Vinv operations.

• Apc/Vpc: If the attacker cannot pollute the entry with the
same index as the victim in the attacker/victim’s address
space, then we can reduce the Apc/Vpc operations.

• Ahis/Vhis: If the attacker cannot poison the branch his-
tory related to the target entry using branch instructions
in the attacker/victim’s address space, then we can reduce
the Ahis/Vhis operations.

• Aalias/Valias: If the attacker cannot pollute the entry with
the alias index in the attacker/victim’s address space, then
we can reduce the Aalias/Valias operations.

Lock-Based BTB [52]. This technique uses a locking
mechanism to protect the secret-related entries of the BTB,
and the locked entries cannot be updated and replaced by
other processes. Therefore, the attacker cannot perform the
Ainv/Apc/Ahis/Aalias operation in its own address space to
pollute the state of the branch predictor entry associated with
the security-critical branch. However, the attacker can still
control the victim to change the state of the locked entry and
infer the secret information through the timing-based attack.



MI6 [12] and BRB [56]. These two solutions both flush
the state of the PHT during context switches, thus eliminating
the Apc/Ahis operation for the PHT in the three-step model.
Similarly, this technique allows the attacker to infer the secret
information through the timing-based attack by poisoning the
PHT state with the victim’s operations.

Two-Level Encryption [43] and Noisy-XOR-BP [65].
These two schemes use encryption to protect the indexing
and data of the branch predictor entries. The attacker cannot
construct the same index in its address space to pollute the
PHT entry corresponding to the security-critical branch, nor
can it use the same or an alias index to poison the BTB
entry corresponding to the security-critical branch. Therefore,
these two techniques remove the Apc operation for the PHT
and the Apc/Aalias/Vpc/Valias operation for the BTB in the
three-step model. However, the attacker can still poison the
branch history associated with the target PHT or BTB entry
to interfere with the victim’s branch prediction and steal secret
information through the timing-based attack.

Probabilistic Saturating Counter [64]. The basic principle
of this approach is to make the saturation counter in the PHT
entry update with a certain probability after each branch in-
struction. Although this design imposes a performance penalty
on the branch predictor, if the updating probability is set to
a very low value, the attacker cannot force the PHT into a
deterministic state in this case, i.e., the attacker cannot know
what state of the PHT entry is in a finite state machine.
Therefore, the Apc/Ahis/Vpc/Vhis operation in the three-step
model for the PHT can all be eliminated.

LS-BP [16]. This approach uses the PID and the entire
branch PC value to index the PHT and BTB entries, making
it infeasible for the attacker to index the same entry as the
victim in its own address space or through the alias index in
the victim’s address space. Therefore, the Apc operation for
the PHT and the Apc/Aalias/Vpc/Valias operation for the BTB
are removed in the three-step model. However, the attacker can
still invalidate the BTB entry, trigger the victim to execute the
branch instruction and poison the branch histories to interfere
with the victim’s branch prediction.

HyBP [66]. This hybrid design combines physical isolation
and randomization to protect the security-critical entries of the
branch predictor, preventing the attacker from constructing an
eviction set for the BTB and poisoning the branch target of the
victim entry. This approach eliminates the Apc operation for
the PHT and the Ainv/Apc/Aalias/Vinv/Vpc/Valias operation
for the BTB in the three-step combinations. However, the
attacker can still pollute the branch history associated with the
target PHT or BTB entry to mistrain the victim’s branches.

B. Evaluation of Secure Branch Predictors

After modeling 8 existing typical secure branch predictor
designs, we evaluate the security of these secure designs using
the three-step branch predictor simulator. Table VI shows the
effectiveness of different secure branch predictors in protecting
against security vulnerabilities for each branch predictor unit
and the total number of vulnerabilities that still exist. Among

them, the value to the left of “/” indicates the number of
vulnerabilities that exist for that branch predictor unit under
that secure design, and the value to the right of “/” indicates
the total number of vulnerabilities previously derived for that
branch predictor unit.

The results show that PSC [64] can be very effective in
protecting against PHT security vulnerabilities under ideal
circumstances since this mechanism makes it infeasible for
an attacker to mistrain the branch predictor deterministically.
Then, HyBP [66] can effectively protect against three-step
attack combinations against BTB and is also the most effective
design for all security vulnerability protection, which can
mitigate 123 out of 156 three-step attack combinations.

TABLE VI
SECURE BRANCH PREDICTOR EVALUATION FOR ALL VULNERABILITIES

Defense Strategy PHT BTB
(ind)

BTB
(call)

BTB
(ret) RSB Total

Lock-Based BTB [52] 28/28 19/56 11/30 11/30 5/12 74/156
MI6 [12] 10/28 56/56 30/30 30/30 5/12 131/156
BRB [56] 10/28 56/56 30/30 30/30 5/12 131/156

Two-Level Encryption [43] 18/28 12/56 2/30 2/30 5/12 39/156
Noisy-XOR-BP [65] 18/28 12/56 2/30 2/30 5/12 39/156

PSC [64] 0/28 56/56 30/30 30/30 5/12 121/156
LS-BP [16] 18/28 12/56 2/30 2/30 5/12 39/156
HyBP [66] 18/28 10/56 0/30 0/30 5/12 33/156

We then also analyze the effectiveness of protection against
four categories of attacks, previously classified as hit-based
internal interference attacks (IH), hit-based external interfer-
ence attacks (EH), missing internal interference attacks (IM),
and missing external interference attacks (EM). As listed in
Table VII, we can see that HyBP [66] can provide the most
effective protection against all four attack categories, which
can mitigate 21 out of 28 IH attacks, 14 out of 20 EH attacks,
41 out of 54 IM attacks, and 47 out of 54 EM attacks.
Then, Two-Level Encryption [43], Noisy-XOR-BP [65], and
LS-BP [16] can also provide the best protection against EH
attacks, IM attacks, and EM attacks like HyBP [66].

TABLE VII
SECURE BRANCH PREDICTOR EVALUATION FOR IH/EH/IM/EM ATTACKS

Defense Strategy IH
Attack

EH
Attack

IM
Attack

EM
Attack

Lock-Based BTB [52] 16/28 12/20 36/54 10/54
MI6 [12] 24/28 17/20 49/54 41/54
BRB [56] 24/28 17/20 49/54 41/54

Two-Level Encryption [43] 13/28 6/20 13/54 7/54
Noisy-XOR-BP [65] 13/28 6/20 13/54 7/54

PSC [64] 22/28 15/20 43/54 41/54
LS-BP [16] 13/28 6/20 13/54 7/54
HyBP [66] 7/28 6/20 13/54 7/54

Next, we evaluate the coverage of these secure designs
against 67 three-step attack patterns corresponding to the
attacks found in previous research work and 89 newly derived
attack patterns that we derive using the branch predictor
simulator. The experimental results listed in Table VIII show
that HyBP [66] provides the best protection against known



and newly derived attacks in these secure designs, which can
mitigate 58 out of 67 known attacks and 65 out of 89 newly
derived attacks. Then, Two-Level Encryption [43], Noisy-
XOR-BP [65], and LS-BP [16] have better protection coverage
for both known and newly derived attacks. In addition, Lock-
Based BTB [52] has better protection against known attacks,
but this design has significant omissions for newly derived at-
tacks. Furthermore, MI6 [12] and BRB [56] do not adequately
protect against known and newly derived attacks.

TABLE VIII
SECURE BRANCH PREDICTOR EVALUATION FOR KNOWN/NEW ATTACKS

Defense Strategy PHT
(known)

BTB
(known)

RSB
(known)

PHT
(new)

BTB
(new)

RSB
(new)

Lock-Based BTB [52] 12/12 6/50 0/5 16/16 35/66 5/7
MI6 [12] 2/12 50/50 0/5 8/16 66/66 5/7
BRB [56] 2/12 50/50 0/5 8/16 66/66 5/7

Two-Level Encryption [43] 5/12 7/50 0/5 9/16 35/66 5/7
Noisy-XOR-BP [65] 5/12 7/50 0/5 9/16 35/66 5/7

PSC [64] 0/12 50/50 0/5 0/16 66/66 5/7
LS-BP [16] 5/12 7/50 0/5 13/16 9/66 5/7
HyBP [66] 5/12 4/50 0/5 13/16 6/66 5/7

Although these experimental results show that the existing
secure branch predictor designs are not able to resist all mi-
croarchitecture side-channel attacks, even the best-performing
HyBP [66] can only shield about 79% of the attack patterns,
while the worst-performing MI6 [12] and BRB [56] can only
cover about 16% of the attack patterns, we can also observe
from the evaluation results that various branch predictor de-
signs have better security coverage for previously unknown
attack patterns. Therefore, the secure branch predictor design
has some positive significance for enhancing the security of
branch predictors and computer systems.

C. Comparison with other Hardware-Based Defenses

Apart from secure branch predictor designs, researchers
have also proposed many hardware defense strategies against
speculative execution attacks, and we then compare the per-
formance of secure branch predictors with these approaches
against speculative execution attacks in the following. Accord-
ing to the classification of defense strategies proposed by Hu et
al. [36], we select four representative hardware-based defenses
for our evaluation that introduce a relatively low-performance
overhead in the existing defenses.

DAWG (No Setup) [39]. This method partitions the cache
lines into different domains and prevents the attacker from
accessing the cache lines in the victim’s domain, which can
prevent the attacker from performing the Acc operation on the
cache in the three-step model. However, the attacker can still
perform the Acc operation through other covert channels or
when the attacker and the victim are in the same domain.

CSF-LFENCE (No Access Without Authorization) [53].
This hardware-based defense prevents the transient execution
after a security-critical branch by inserting a fence instruction
between that branch and the secret-dependent memory access,
thus eliminating the transient execution of the Vval operation
in the second step for the PHT in the three-step model.

Speculative Taint Tracking (No Use Without Authoriza-
tion) [62]. This approach leverages taint-tracking to track
sensitive instructions and information flow in the program,
then blocks the execution of the security-critical branch until
the authorization finishes. Therefore, this method can eliminate
the Vval operation for the PHT in the three-step model.

InvisiSpec (No Send Without Authorization) [60]. This
hardware-based mitigation prevents the attacker from perform-
ing the Acc operation on the cache in the three-step model by
extending a speculative buffer to store speculatively accessed
data and not updating the cache state until the speculation
is validated. However, the attacker can still perform the Acc

operation through other covert channels.
Then, we evaluate the security vulnerability coverage of

these four hardware-based defenses against speculative exe-
cution attacks, as shown in Table IX. The result demonstrates
that these hardware-based defenses can only mitigate a limited
number of speculative execution attacks or only mitigate
specific cache covert channels. In contrast, the secure branch
predictor designs can mitigate more speculative execution
attacks, such as Two-Level Encryption [43], Noisy-XOR-
BP [65], LS-BP [16], and HyBP [66]. Therefore, secure
branch predictor designs are an effective and viable solution to
mitigate the security vulnerabilities against branch predictors
compared with hardware-based defenses.

TABLE IX
EVALUATION OF SECURE BRANCH PREDICTORS AND HARDWARE-BASED

COUNTERMEASURES AGAINST SPECULATIVE EXECUTION ATTACKS

Defense Strategy Defense Type TEA
(cache)

TEA
(other)

Lock-Based BTB [52] Secure BP 12/20 12/20
MI6 [12] Secure BP 17/20 17/20
BRB [56] Secure BP 17/20 17/20

Two-Level Encryption [43] Secure BP 6/20 6/20
Noisy-XOR-BP [65] Secure BP 6/20 6/20

PSC [64] Secure BP 15/20 15/20
LS-BP [16] Secure BP 6/20 6/20
HyBP [66] Secure BP 6/20 6/20

DAWG [39] No Setup 17/20 19/20
CSF-LFENCE [53] No Access 15/20 15/20

STT [62] No Use 15/20 15/20
InvisiSpec [60] No Send 15/20 19/20

VI. CONCLUSION

This paper proposes a comprehensive and automated secu-
rity analysis framework for verifying security guarantees of
branch predictors against microarchitectural attacks at the de-
sign stage. We first present a three-step attack model targeting
branch predictors in modern processors by abstractly model-
ing 19 branch predictor states and 53 operations that could
affect these states. Based on this attack model, we develop
a symbolic execution-based framework and derive 156 valid
attack patterns against branch predictors, including 89 never
identified in previous work. Finally, we use this framework
to inspect the security vulnerabilities of 8 existing secure
branch predictors and four typical hardware-based speculative
execution defenses. The result shows that the secure branch



predictor design is a promising solution for preserving the
confidentiality and integrity of computer systems.

ACKNOWLEDGMENT

This work was supported by National Key R&D Program of
China under Grant No. 2022YFB3103800 and National Natu-
ral Science Foundation of China under Grant No. 61972295.
We would also like to thank the anonymous reviewers for their
constructive and insightful comments.

REFERENCES

[1] O. Acıiçmez, S. Gueron, and J.-P. Seifert, “New Branch Prediction Vul-
nerabilities in OpenSSL and Necessary Software Countermeasures,” in
Proceedings of the 11th IMA International Conference on Cryptography
and Coding. Springer, 2007, pp. 185–203.

[2] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the Power of Simple
Branch Prediction Analysis,” in Proceedings of the 2nd ACM Symposium
on Information, Computer and Communications Security. ACM, 2007,
pp. 312–320.

[3] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting Secret Keys via
Branch Prediction,” in Proceedings of the 7th Cryptographers’ track
at the RSA conference on Topics in Cryptology. Springer, 2007, pp.
225–242.

[4] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
Side-Channel(s): Attacks and Assessment Methodologies,” in 4th Inter-
national Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2002, pp. 29–45.

[5] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks,” in 31st USENIX Security Sympo-
sium (USENIX Security 22). USENIX Association, 2022, pp. 971–988.

[6] G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira,
S. Priya, T. Rezk, and P. Schwabe, “High-Assurance Cryptography in
the Spectre Era,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 1884–1901.

[7] M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Specu-
lative Interference Attacks: Breaking Invisible Speculation Schemes,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
2021, pp. 1046–1060.

[8] S. Bhattacharya, C. Maurice, S. Bhasin, and D. Mukhopadhyay, “Tem-
plate Attack on Blinded Scalar Multiplication with Asynchronous perf-
ioctl Calls,” Cryptology ePrint Archive, 2017.

[9] S. Bhattacharya, C. Maurice, S. Bhasin, and D. Mukhopadhyay, “Branch
Prediction Attack on Blinded Scalar Multiplication,” IEEE Transactions
on Computers, vol. 69, no. 5, pp. 633–648, 2019.

[10] A. Bhattacharyya, A. S. Marin, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer, “SpecROP: Speculative Exploitation of ROP
Chains,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). USENIX Association, 2020,
pp. 1–16.

[11] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2019, pp. 785–800.

[12] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas, “MI6:
Secure Enclaves in a Speculative Out-of-Order Processor,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2019, pp. 42–56.

[13] Y. Bulygin, “CPU side-channels vs. virtualization malware: The good,
the bad or the ugly,” ToorCon, 2008.

[14] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” in 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, 2019, pp.
249–266.

[15] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan, “A Formal
Approach to Secure Speculation,” in 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF). IEEE, 2019, pp. 288–303.

[16] C. Chen, C. Shen, and J. Zhang, “Lightweight and Secure Branch
Predictors against Spectre Attacks,” in 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2022, pp. 25–30.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre:
Stealing Intel Secrets from SGX Enclaves Via Speculative Execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[18] M. H. I. Chowdhuryy and F. Yao, “Leaking Secrets through Modern
Branch Predictor in the Speculative World,” IEEE Transactions on
Computers, vol. 71, no. 9, pp. 2059–2072, 2021.

[19] L.-A. Daniel, S. Bardin, and T. Rezk, “Hunting the Haunter — Efficient
Relational Symbolic Execution for Spectre with Haunted RelSE,” in
Network and Distributed Systems Security (NDSS) Symposium 2021.
ISOC, 2021.

[20] S. Deng, W. Xiong, and J. Szefer, “Analysis of Secure Caches Using
a Three-Step Model for Timing-Based Attacks,” Journal of Hardware
and Systems Security, vol. 3, no. 4, pp. 397–425, 2019.

[21] S. Deng, W. Xiong, and J. Szefer, “Secure TLBs,” in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA).
ACM, 2019, pp. 346–359.

[22] S. Deng, W. Xiong, and J. Szefer, “A Benchmark Suite for Evaluating
Caches’ Vulnerability to Timing Attacks,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 2020, pp. 683–697.

[23] P. W. Deutsch, W. T. Na, T. Bourgeat, J. S. Emer, and M. Yan, “Metior:
A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense
Schemes,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture. ACM, 2023, pp. 1–16.

[24] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Covert channels
through branch predictors: a feasibility study,” in Proceedings of the
4th Workshop on Hardware and Architectural Support for Security and
Privacy. ACM, 2015, pp. 1–8.

[25] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking branch predictors to bypass ASLR,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–13.

[26] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding
and Mitigating Covert Channels Through Branch Predictors,” ACM
Transactions on Architecture and Code Optimization, vol. 13, no. 1,
pp. 1–23, 2016.

[27] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2018, pp. 693–707.

[28] X. Fabian, M. Guarnieri, and M. Patrignani, “Automatic Detection of
Speculative Execution Combinations,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2022, pp. 965–978.

[29] J. Fustos, M. Bechtel, and H. Yun, “SpectreRewind: Leaking Secrets to
Past Instructions,” in Proceedings of the 4th ACM Workshop on Attacks
and Solutions in Hardware Security. ACM, 2020, pp. 117–126.

[30] R. Guanciale, M. Balliu, and M. Dam, “InSpectre: Breaking and Fixing
Microarchitectural Vulnerabilities by Formal Analysis,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2020, pp. 1853–1869.

[31] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“SPECTECTOR: Principled Detection of Speculative Information
Flows,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 1–19.

[32] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-Software
Contracts for Secure Speculation,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1868–1883.

[33] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo,
“SpecuSym: Speculative symbolic execution for cache timing leak detec-
tion,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. IEEE, 2020, pp. 1235–1247.

[34] Z. He, G. Hu, and R. Lee, “New Models for Understanding and
Reasoning about Speculative Execution Attacks,” in 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2021, pp. 40–53.

[35] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. Elsevier, 2011.



[36] G. Hu, Z. He, and R. B. Lee, “SoK: Hardware Defenses Against
Speculative Execution Attacks,” in 2021 International Symposium on
Secure and Private Execution Environment Design (SEED). IEEE,
2021, pp. 108–120.

[37] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and
M. Tiwari, “Understanding contention-based channels and using them
for defense,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2015, pp. 639–
650.

[38] T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li,
“Bluethunder: A 2-level Directional Predictor Based Side-Channel At-
tack against SGX,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2020, no. 1, pp. 321–347, 2020.

[39] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[40] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre Attacks:
Exploiting Speculative Execution,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 1–19.

[41] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology. Springer, 1999, pp. 388–397.

[42] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018,
pp. 1–12.

[43] J. Lee, Y. Ishii, and D. Sunwoo, “Securing Branch Predictors with
Two-Level Encryption,” ACM Transactions on Architecture and Code
Optimization, vol. 17, no. 3, pp. 1–25, 2020.

[44] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A Survey of Microarchitec-
tural Side-channel Vulnerabilities, Attacks, and Defenses in Cryptogra-
phy,” ACM Computing Surveys, vol. 54, no. 6, pp. 1–37, 2021.

[45] G. Maisuradze and C. Rossow, “ret2spec: Speculative Execution Using
Return Stack Buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 2109–2122.

[46] N. Mosier, H. Lachnitt, H. Nemati, and C. Trippel, “Axiomatic hardware-
software contracts for security,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture. ACM, 2022, pp.
72–86.

[47] H. Ponce-de León and J. Kinder, “Cats vs. Spectre: An Axiomatic
Approach to Modeling Speculative Execution Attacks,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 235–248.

[48] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN: attacking
ARM pointer authentication with speculative execution,” in Proceedings
of the 49th Annual International Symposium on Computer Architecture.
ACM, 2022, pp. 685–698.

[49] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
Spectre: Read Arbitrary Memory over Network,” in 24th European
Symposium on Research in Computer Security. Springer, 2019, pp.
279–299.

[50] A. Seznec, “A 256 kbits l-tage branch predictor,” Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship
Branch Prediction Competition (CBP-2), vol. 9, pp. 1–6, 2007.

[51] J. Szefer, “Survey of Microarchitectural Side and Covert Channels,
Attacks, and Defenses,” Journal of Hardware and Systems Security,
vol. 3, no. 3, pp. 219–234, 2019.

[52] Y. Tan, J. Wei, and W. Guo, “The Micro-architectural Support Coun-
termeasures against the Branch Prediction Analysis Attack,” in 2014
IEEE 13th International Conference on Trust, Security and Privacy in
Computing and Communications. IEEE, 2014, pp. 276–283.

[53] M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
2019, pp. 395–410.

[54] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “SpecHam-
mer: Combining Spectre and Rowhammer for New Speculative Attacks,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 681–698.

[55] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and Spec-
trePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols,” arXiv preprint arXiv:1802.03802, 2018.

[56] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M. Al-
Hashimi, and G. V. Merrett, “BRB: Mitigating Branch Predictor Side-
Channels,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2019, pp. 466–477.

[57] G. Wang, S. Chattopadhyay, A. K. Biswas, T. Mitra, and A. Roychoud-
hury, “KLEESpectre: Detecting Information Leakage through Specu-
lative Cache Attacks via Symbolic Execution,” ACM Transactions on
Software Engineering and Methodology, vol. 29, no. 3, pp. 1–31, 2020.

[58] J. Wikner and K. Razavi, “RETBLEED: Arbitrary Speculative Code Ex-
ecution with Return Instructions,” in 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, 2022, pp. 3825–3842.

[59] W. Xiong and J. Szefer, “Survey of Transient Execution Attacks and
Their Mitigations,” ACM Computing Surveys, vol. 54, no. 3, pp. 1–36,
2021.

[60] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[61] Y. Yang, T. Bourgeat, S. Lau, and M. Yan, “Pensieve: Microarchitectural
Modeling for Security Evaluation,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture. ACM, 2023, pp.
1–15.

[62] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2019, pp. 954–968.

[63] T. Zhang, K. Koltermann, and D. Evtyushkin, “Exploring Branch
Predictors for Constructing Transient Execution Trojans,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2020, pp.
667–682.

[64] L.-T. Zhao, R. Hou, K. Wang, Y.-L. Su, P.-N. Li, and D. Meng, “A Novel
Probabilistic Saturating Counter Design for Secure Branch Predictor,”
Journal of Computer Science and Technology, vol. 36, pp. 1022–1036,
2021.

[65] L. Zhao, P. Li, R. Hou, M. C. Huang, J. Li, L. Zhang, X. Qian,
and D. Meng, “A Lightweight Isolation Mechanism for Secure Branch
Predictors,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 1267–1272.

[66] L. Zhao, P. Li, R. Hou, M. C. Huang, X. Qian, L. Zhang, and D. Meng,
“HyBP: Hybrid Isolation-Randomization Secure Branch Predictor,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 346–359.

APPENDIX

A. Abstract

Our artifact contains a modeling methodology for branch
predictor states and a three-step symbolic execution simulator
for deriving vulnerable three-step attack patterns. The inputs
of the simulator can be configured to model different branch
predictor designs and speculative execution attack countermea-
sures. The output of the simulator includes valid attack patterns
vulnerable to the given design and the number of different at-
tack categories. Researchers can analyze their branch predictor
designs by customizing the code in src/simulator.rs to
add additional branch predictor states, operations, and update
logic for the simulator.

B. Artifact check-list (meta-information)
• Algorithm: Three-step branch predictor simulator based on

symbolic execution
• Run-time environment: Rust 2021
• Output: Terminal outputs including expected results



• Experiments: Derivation of valid attack patterns and evaluation
of existing defenses

• How much disk space required (approximately)?: 10 MB
• How much time is needed to complete experiments (approx-

imately)?: 5 minutes
• Publicly available?: Yes, available at https://doi.org/10.5281/

zenodo.10297402
• Code licenses (if publicly available)?: Apache License 2.0
• Archived (provide DOI)?: 10.5281/zenodo.10297402

C. Description

1) How to access: Our branch predictor modeling approach
and simulator are available at https://doi.org/10.5281/zenodo.
10297402. The newest version of the simulator is available at
https://github.com/iamywang/bp-security-framework.

D. Installation

1. Install Rust:
$ sudo apt install rustc (Ubuntu 18.04 or later)
$ sudo pacman -S rust (Arch Linux)
2. Build the simulator:
$ cd bp-sec-sim
$ cargo build --release
$ cp ./target/release/bp-sec-sim ./

E. Evaluation and expected results

Derivation of All 156 Three-Step Vulnerabilities. This
experiment is used to reproduce valid attack patterns listed in
Table IV, including attack categories, attack patterns, and the
execution timing of secret-dependent branches.

Running the following command will generate terminal out-
put expected to be similar to expected res/exp1 derivation.out,
which contains all the 156 attack patterns derived by our
simulator.
$ ./bp-sec-sim exp1_derivation
Security Analysis of 8 Secure Branch Predictors. This

experiment is used to reproduce the results listed in Table VI,
Table VII, and Table VIII.

Running the command below will generate terminal output
expected to be similar to expected res/exp2 rsb refilling.out,
which contains the number of vulnerabilities that cannot be
covered by RSB refilling.
$ ./bp-sec-sim exp2_rsb_refilling
Running the following command will generate terminal out-

put expected to be similar to expected res/exp2 secure bp.out,
which contains the number of vulnerabilities for each secure
branch predictor.
$ ./bp-sec-sim exp2_secure_bp
Security Analysis of 4 Hardware-Based Speculative At-

tack Countermeasures. This experiment is used to reproduce
the results listed in Table IX.

Running the command below will generate terminal output
expected to be similar to expected res/exp3 baseline bp.out,
which contains the number of speculative attacks for the
baseline branch predictor.
$ ./bp-sec-sim exp3_baseline_bp
Running the following command will generate terminal out-

put expected to be similar to expected res/exp3 secure bp.out,

which contains the number of speculative attacks for each
secure branch predictor.
$ ./bp-sec-sim exp3_secure_bp
Running the command below will generate terminal output

expected to be similar to expected res/exp3 hw defenses.out,
which contains the number of speculative attacks for each
hardware-based countermeasure.
$ ./bp-sec-sim exp3_hw_defenses
Security Analysis of Two Modeling Approaches for

TAGE Branch Predictor. This experiment is used to repro-
duce the results of Case Study I in Section IV-C.

Running the following command will generate terminal
output expected to be similar to expected res/exp4 tage.out,
which contains the number of vulnerabilities for the TAGE
branch predictor.
$ ./bp-sec-sim exp4_tage

F. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://doi.org/10.5281/zenodo.10297402
https://doi.org/10.5281/zenodo.10297402
https://doi.org/10.5281/zenodo.10297402
https://doi.org/10.5281/zenodo.10297402
https://github.com/iamywang/bp-security-framework
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Introduction
	Background
	Overview of Branch Predictors
	Microarchitectural Attacks against Branch Predictors
	Related Work

	Modeling Branch Predictor States and Corresponding Operations
	Threat Model and Assumptions
	Modeling States of Branch Predictors
	Three-Step Attack Model

	Derivation of All Security Vulnerabilities against Branch Predictors
	Three-Step Branch Predictor Simulator
	Derivation and Categorization of Vulnerabilities
	Case Study I: Extending Modeling Methodology to TAGE
	Case Study II: Proof-of-Concept for Derived Attacks
	Case Study III: Attacking OpenSSL with Novel Variants

	Automated Security Analysis of Existing Secure Branch Predictors
	Modeling Existing Secure Branch Predictors
	Evaluation of Secure Branch Predictors
	Comparison with other Hardware-Based Defenses

	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access

	Installation
	Evaluation and expected results
	Methodology


