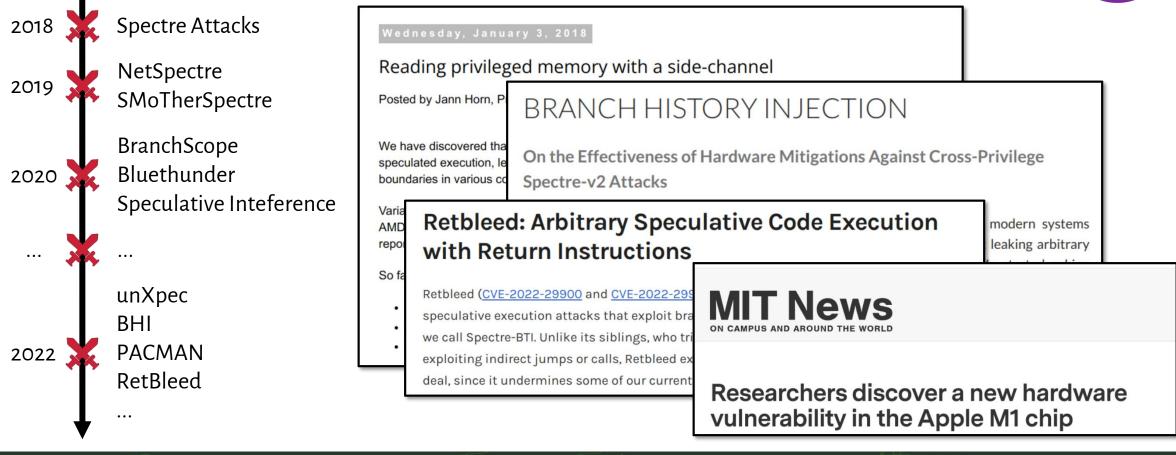


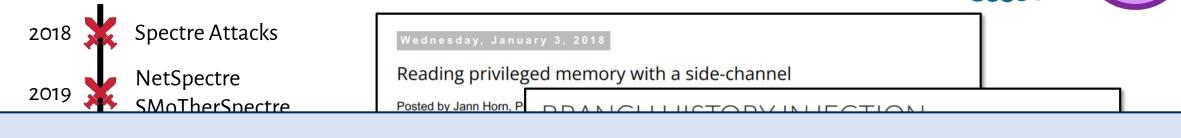
Modeling, Derivation, and Automated Analysis of Branch Predictor Security Vulnerabilities

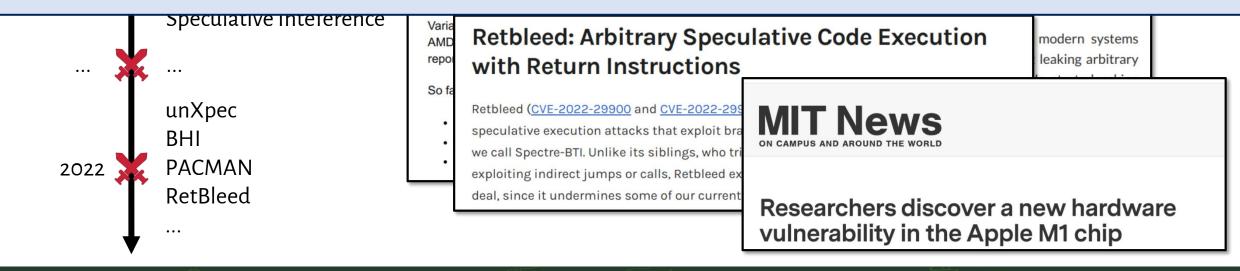

Quancheng Wang, Ming Tang, Ke Xu, Han Wang

Wuhan University

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA) Session 3B: Side-Channel & Microarchitecture Edinburgh, March 2-6, 2024

Background: Evolution of BP Attacks

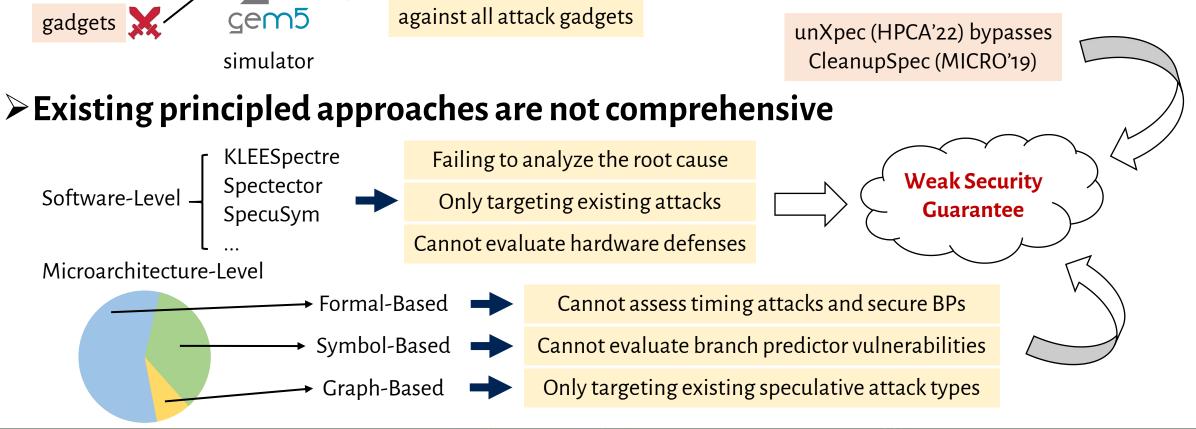

Attacks and CVEs against branch predictors are proliferating Manual search for branch predictor attacks is not exhaustive



Background: Evolution of BP Attacks

A trustworthy tool is essential for exploring all branch predictor attacks!

HPCA 2024

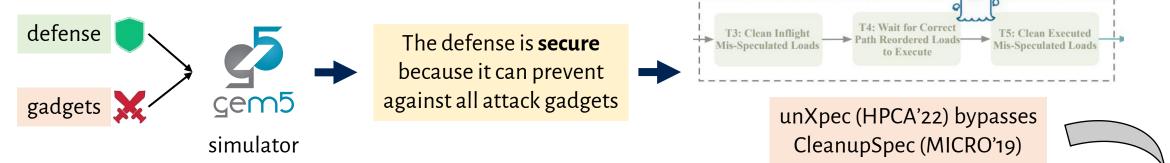

defense

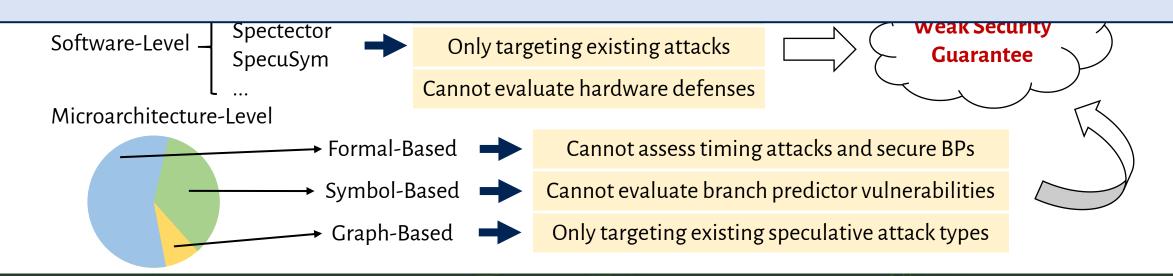
Background: Insufficient Security Evaluation

The defense is **secure**

because it can prevent

\succ Weak security evaluation of many defenses


Speculated Load

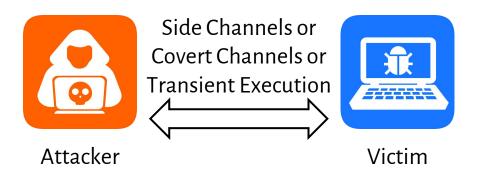

HPCA 2024

Background: Insufficient Security Evaluation

> Weak security evaluation of many defenses

A comprehensive security evaluation is imperative for defense solutions!

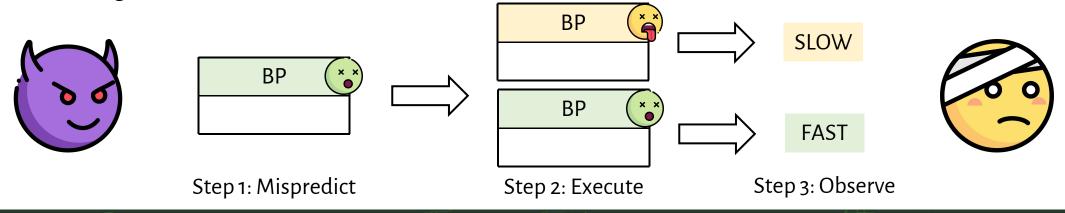
5



Threat Model

Attacker and victim

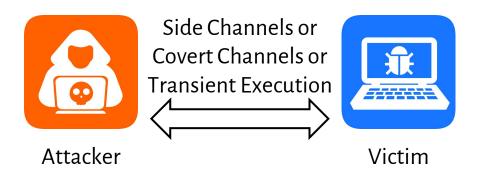
Attacker: App, OS, VM, etc.
Victim: App, OS, VM, TEE, etc.


≻Attacker's goal

Inferring secret data based on branch instruction execution time differences or transient execution due to misprediction

➢Attack types

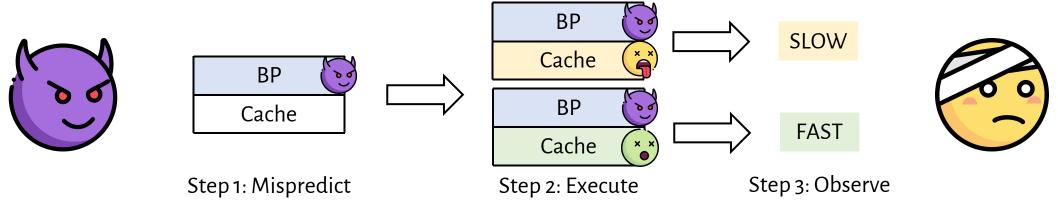
➤Timing-based attacks: side channels, covert channels



Threat Model

Attacker and victim

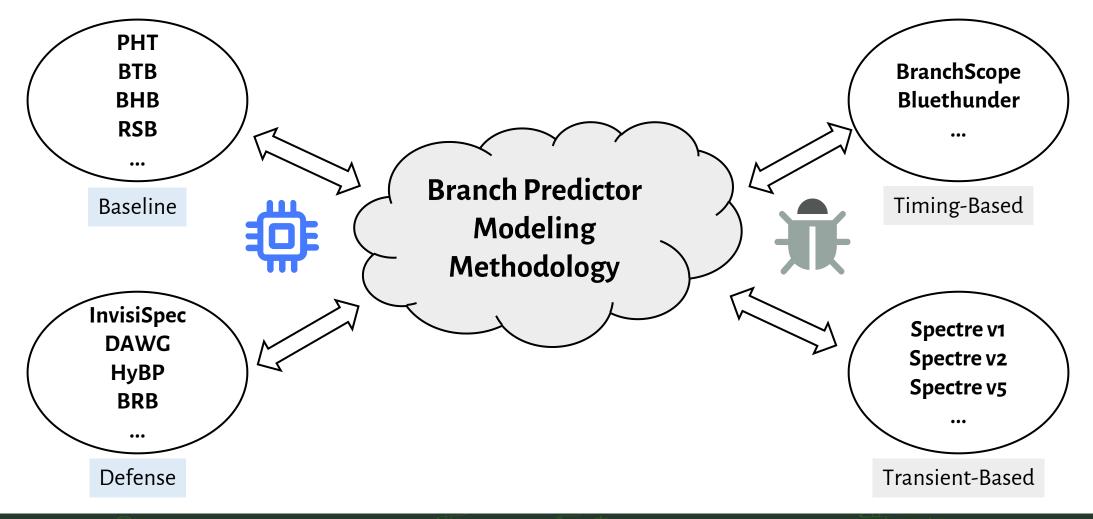
Attacker: App, OS, VM, etc.Victim: App, OS, VM, TEE, etc.


≻Attacker's goal

Inferring secret data based on branch instruction execution time differences or transient execution due to misprediction

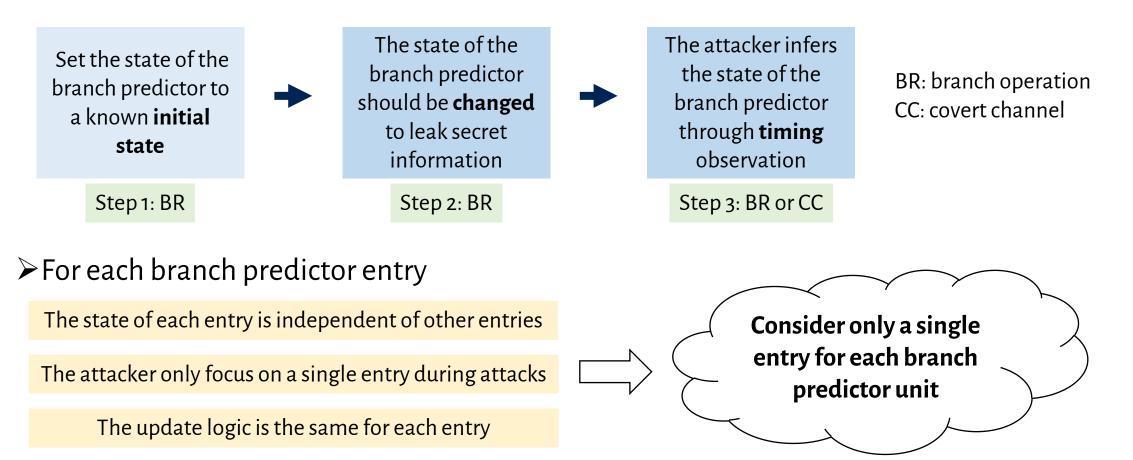
➢Attack types

>Transient-based attacks: speculative attacks



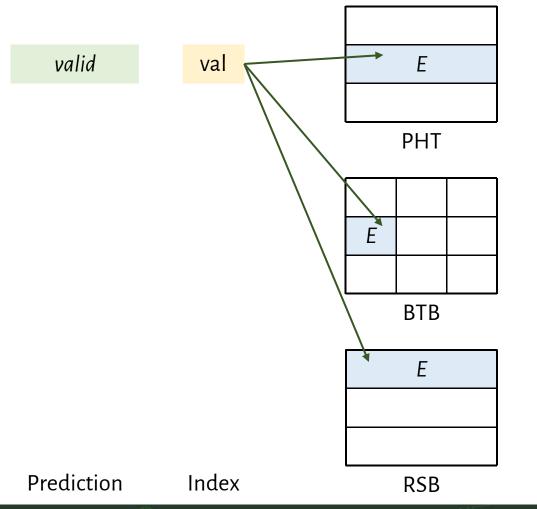
7

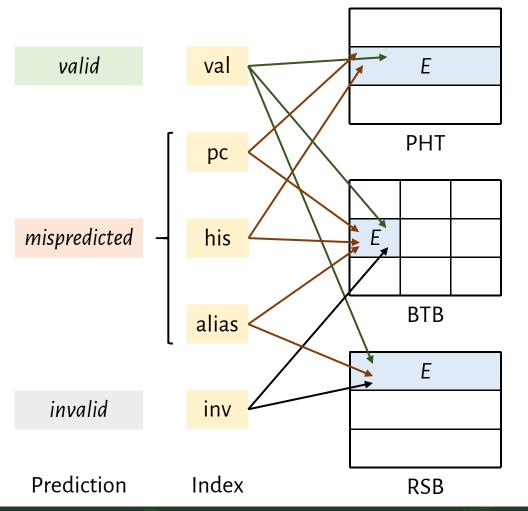
> How to model branch predictors for security evaluation



Modeling: Three-Step Attack Model

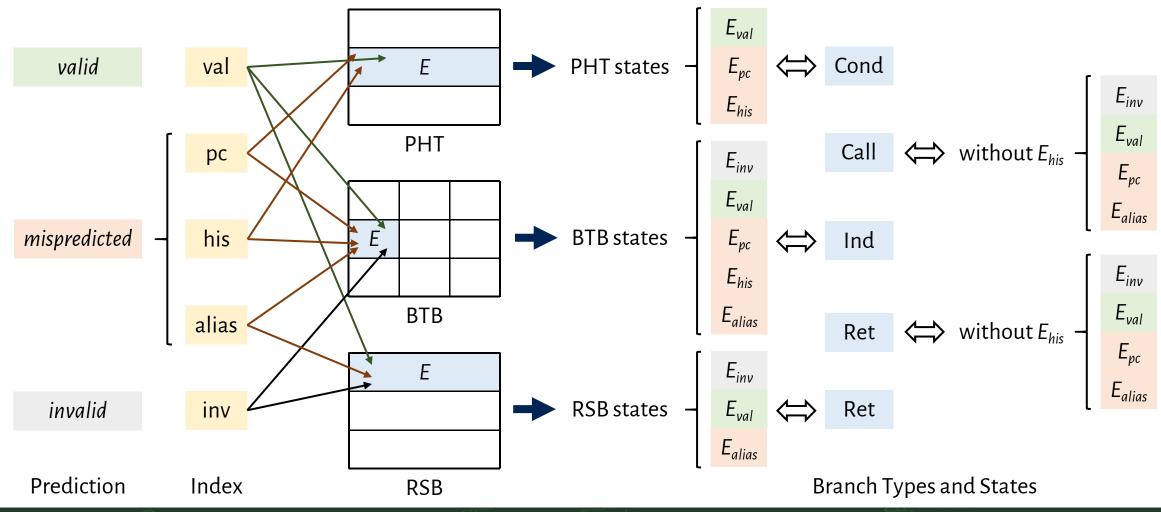
>Insights from microarchitectural attacks against branch predictors


>All existing branch predictor attacks include three steps

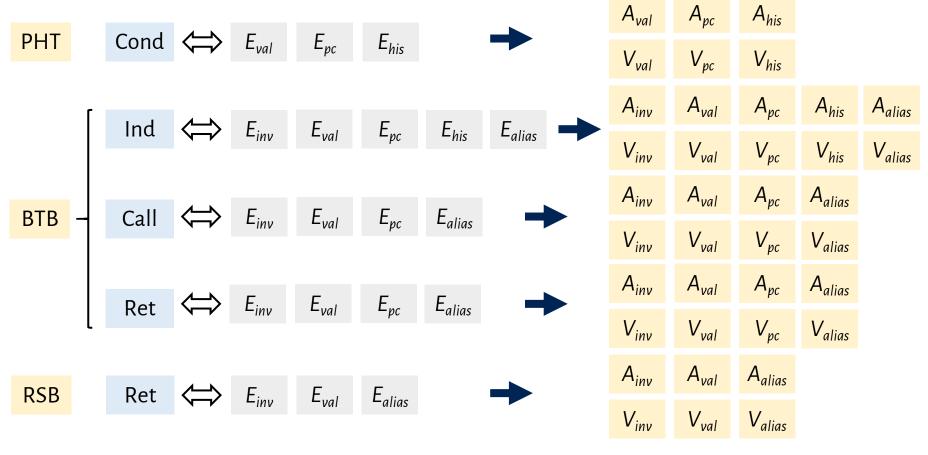

Modeling: Possible Branch Predictor States

> Modeling 19 states of security-critical branch predictor entry E

> Modeling 19 states of security-critical branch predictor entry E

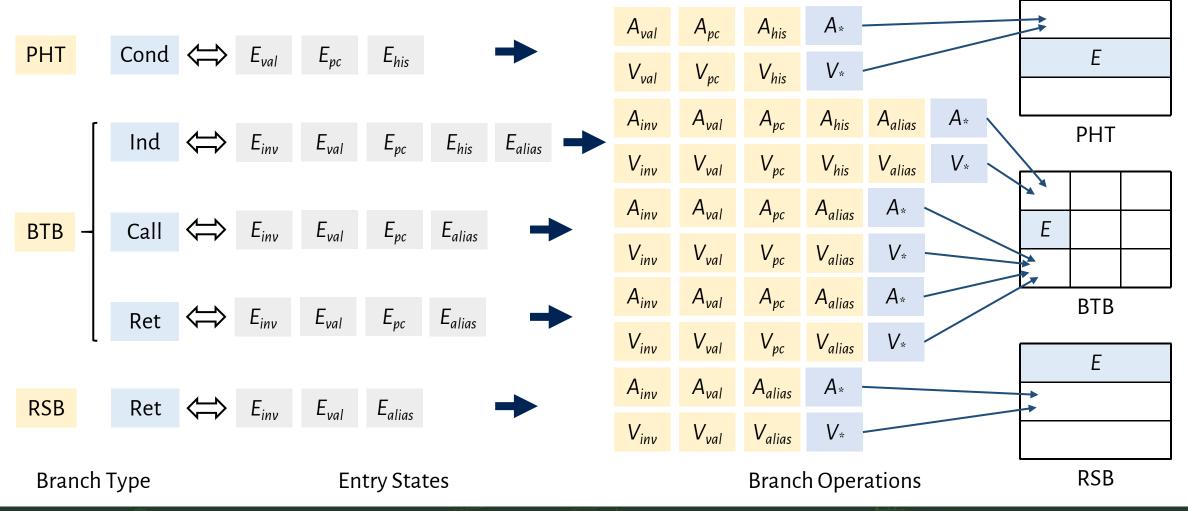


11


Modeling: Possible Branch Predictor States

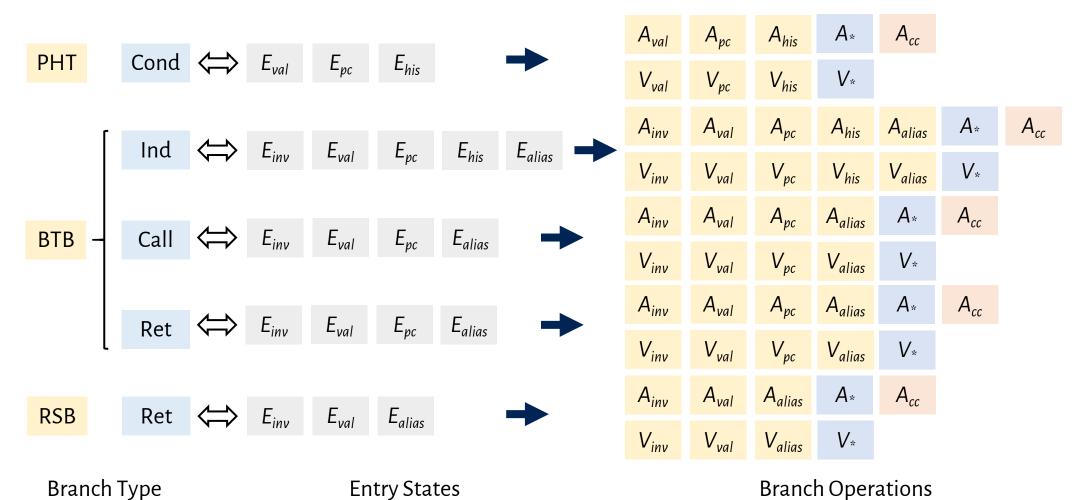
> Modeling 19 states of security-critical branch predictor entry E

> Possible branch operations related to prior 19 target entry states

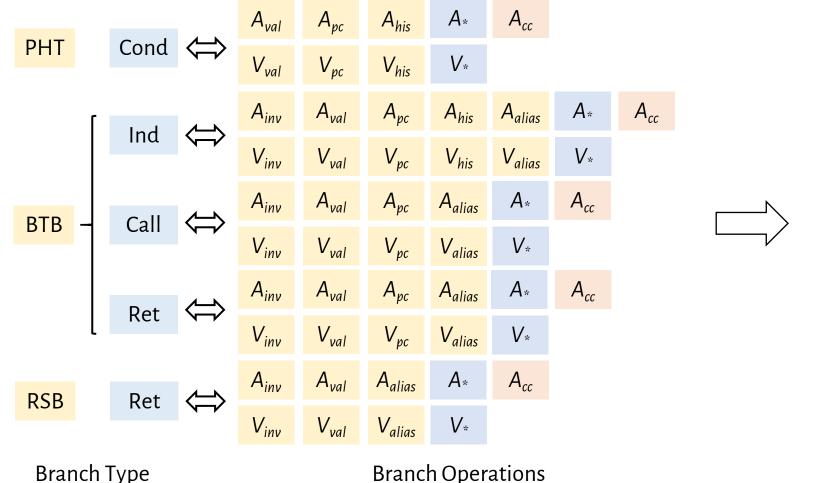

Entry States

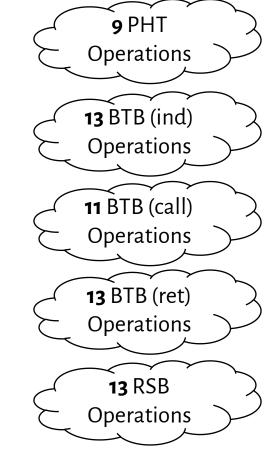
Branch Operations

Branch Type

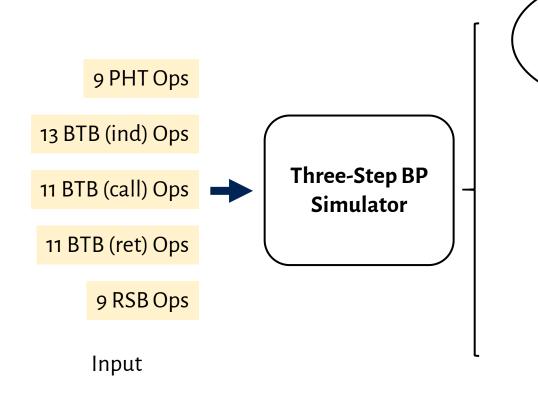


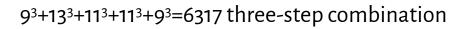
>A or V indicates no operation on the target branch predictor entry




$>A_{cc}$ denotes the observation of the covert channel in transient attacks

> We finally model 53 possible operations in the three-step attack model

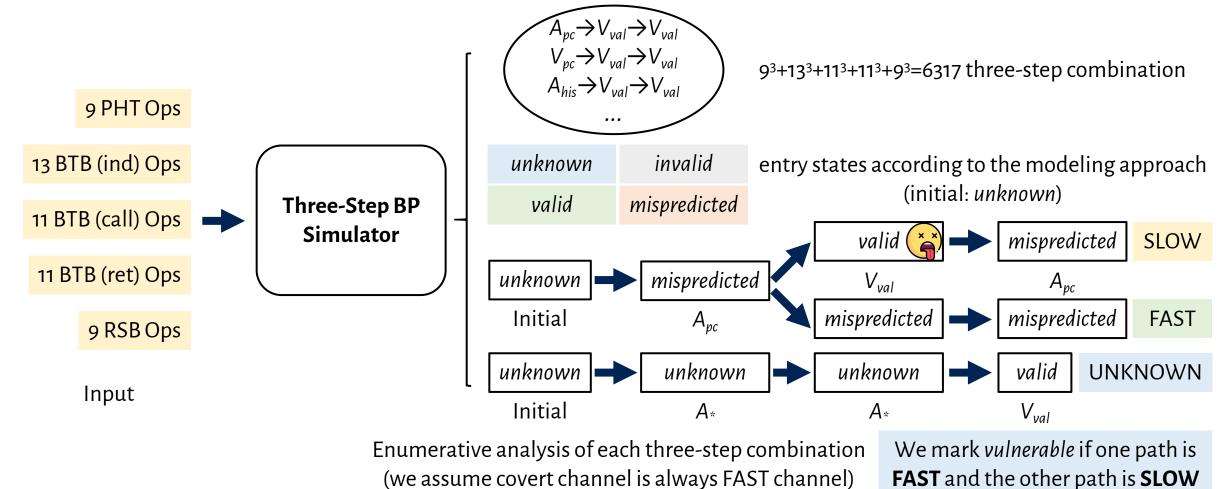

Framework: Branch Predictor Simulator



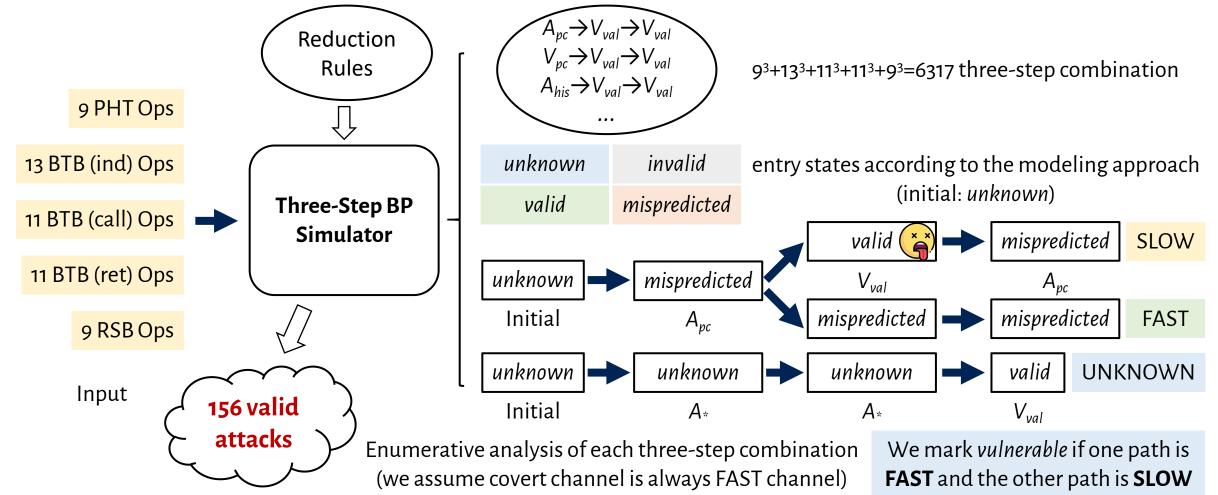
>We implement a branch predictor simulator to explore all attacks

 $A_{pc} \rightarrow V_{val} \rightarrow V_{val}$

 $V_{pc} \rightarrow V_{val} \rightarrow V_{val}$ $A_{his} \rightarrow V_{val} \rightarrow V_{val}$



Framework: Branch Predictor Simulator


> We perform an enumerative analysis of each three-step combination

Framework: Branch Predictor Simulator

> We reduce redundancies and finally derive 156 valid attack patterns

Framework: Summary of Derived Attacks

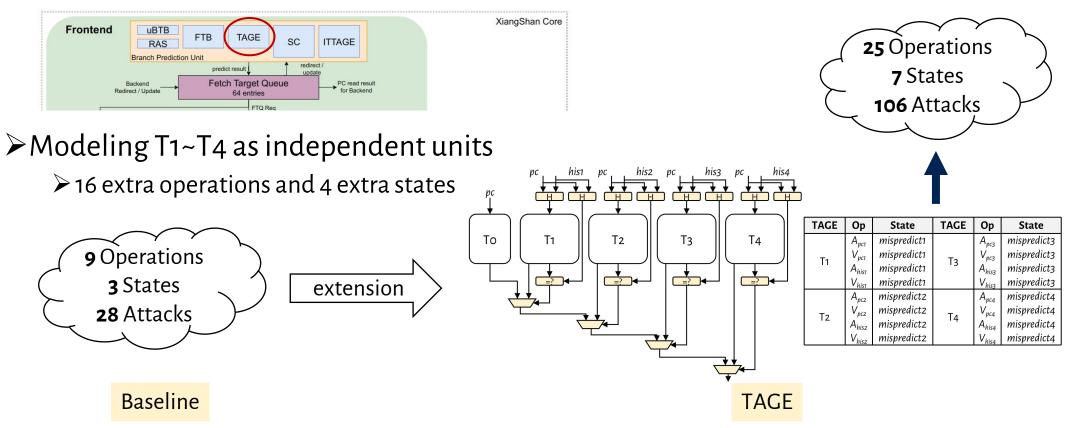
\succ Summary of derived 156 attack patterns

▶ 28 PHT attacks, 116 BTB attacks and 12 RSB attacks > 67 known attacks and 89 novel attacks

Branch Predictor	Known Attacks	Novel Attacks	Total Attacks
PHT	12	16	28
BTB (ind)	20	36	56
BTB (call)	15	15	30
BTB (ret)	15	15	30
RSB	5	7	12
Total	67	89	156

Unit	Step1	Step2	Step3	Category	Туре	Attack	Step1	Step2	Step3	Category	Туре	Attac
Ť.	V_{val}	A_{pc}	$V_{val} (slow)$	EM	TSCA/CCA	new	V_{val}	V_{pc}	$V_{val} (slow)$	IM	TSCA/CCA	new
	V_{val}	A_{his}	V_{val} (slow)	EM	TSCA/CCA	new	Vval	Vhis	V_{val} (slow)	IM	TSCA/CCA	nev
	A_{pc}	V_{val}	V_{val} (fast)	IH	TSCA/CCA	(1)	A_{pc}	V_{val}	A_{pc} (slow)	EM	TSCA/CCA	(1)
	A_{pc}	V_{val}	V_{pc} (slow)	IM	TSCA/CCA	(1)	A_{pc}	V_{val}	A_{his} (slow)	EM	TSCA/CCA	(1)
	A_{pc}	Vual	V_{his} (slow)	IM	TSCA/CCA	(1)	Vnc	Vval	V_{val} (fast)	IH	TSCA/CCA	nev
	V_{pc}	V _{val}	A_{pc} (slow)	EM	TSCA/CCA	new	V_{pc}	V _{val}	V_{pc} (slow)	IM	TSCA/CCA	nev
	V	V _{val}	A_{his} (slow)	EM	TSCA/CCA	new	V_{pc}	V _{val}	V_{his} (slow)	IM	TSCA/CCA	nev
PHT	V_{pc}	Val	V_{val} (fast)	IH	TSCA/CCA	(2)	Pc A	Val	A_{pc} (slow)	EM	TSCA/CCA	(2)
	Ahis	V_{val}	Vval (Jast)	IM		(2)	Ahis	V_{val}		EM		(2)
	A_{his}	Vval	V_{pc} (slow)		TSCA/CCA		Ahis	Vval	A_{his} (slow)		TSCA/CCA	
	A_{his}	V_{val}	V_{his} (slow)	IM	TSCA/CCA	(2)	V_{his}	V_{val}	V_{val} (fast)	IH	TSCA/CCA	nev
	Vhis	Vval	A_{pc} (slow)	EM	TSCA/CCA	new	Vhis	Vnal	V_{pc} (slow)	IM	TSCA/CCA	nev
	V_{his}	V_{val}	$A_{his} (slow)$	EM	TSCA/CCA	new	Vhis	Vval	V_{his} (slow)	IM	TSCA/CCA	nev
	A_{pc}	V_{val}	A_{cc} (fast)	EH	TEA	new	V_{pc}	Vval	A_{cc} (fast)	EH	TEA	(3)
	Ahis	V_{val}	A_{cc} (fast)	EH	TEA	new	Vhis	Vval	A_{cc} (fast)	EH	TEA	(4)
	A_{inv}	V_{val}	V_{val} (fast)	IH	TSCA/CCA	(1)	V_{inv}	Vval	V_{val} (fast)	IH	TSCA/CCA	nev
	Vval	A_{pc}	V_{val} (slow)	EM	TSCA/CCA	new	Vval	V_{pc}	V_{val} (slow)	IM	TSCA/CCA	nev
	Vval	Ahis	V_{val} (slow)	EM	TSCA/CCA	new	Vval	Vhis	V_{val} (slow)	IM	TSCA/CCA	nev
	Vval	Aalias	V_{val} (slow)	EM	TSCA/CCA	new	Vval	Valias	V_{val} (slow)	IM	TSCA/CCA	nev
	A		V_{val} (stota) V_{val} (fast)	IH	TSCA/CCA	(1)		V alias		EM	TSCA/CCA	
	A_{pc}	Vval					A_{pc}	V_{val}	A_{pc} (slow)			(1)
	A_{pc}	V_{val}	V_{pc} (slow)	IM	TSCA/CCA	(1)	A_{pc}	V_{val}	A_{his} (slow)	EM	TSCA/CCA	(1)
	A_{pc}	V_{val}	$V_{his} (slow)$	IM	TSCA/CCA	(1)	A_{pc}	Vval	A_{alias} (slow)	EM	TSCA/CCA	(1)
	A_{pc}	V_{val}	V_{alias} (slow)	IM	TSCA/CCA	(1)	Vpc	Vval	V_{val} (fast)	IH	TSCA/CCA	nev
	V_{pc}	V_{val}	A_{pc} (slow)	EM	TSCA/CCA	new	V_{pc}	Vval	V_{pc} (slow)	IM	TSCA/CCA	nev
	V_{pc}	Vval	A_{his} (slow)	EM	TSCA/CCA	new	V_{pc}	Vval	V_{his} (slow)	IM	TSCA/CCA	nev
	V_{pc}	V_{val}	Aalias (slow)	EM	TSCA/CCA	new	V_{pc}	V_{val}	V_{alias} (slow)	IM	TSCA/CCA	nev
	A_{his}	V_{val}	V_{val} (fast)	IH	TSCA/CCA	new	A_{his}	Vval	A_{pc} (slow)	EM	TSCA/CCA	nev
	Ahis	Vval	V_{pc} (slow)	IM	TSCA/CCA	new	A_{his}	Vval	Ahis (slow)	EM	TSCA/CCA	nev
BTB	Ahis	Vval	V_{his} (slow)	IM	TSCA/CCA	new	Ahis	Vval	A _{alias} (slow)	EM	TSCA/CCA	nev
(ind)	Ahis	Vval	Valias (slow)	IM	TSCA/CCA	new	Vhis	Vval	V _{val} (fast)	IH	TSCA/CCA	nev
(ind)				EM	TSCA/CCA	new				IM	TSCA/CCA	
	V_{his}	V_{val}	A_{pc} (slow)				V_{his}	V _{val}	V_{pc} (slow)			nev
	Vhis	Vval	A_{his} (slow)	EM	TSCA/CCA	new	V_{his}	Vval	$V_{his} (slow)$	IM	TSCA/CCA	nev
	Vhis	V_{val}	A_{alias} (slow)	EM	TSCA/CCA	new	Vhis	Vval	V_{alias} (slow)	IM	TSCA/CCA	nev
	Aalias	V_{val}	V_{val} (fast)	IH	TSCA/CCA	(1)	Aalias	V_{val}	A_{pc} (slow)	EM	TSCA/CCA	(1)
	A_{alias}	V_{val}	V_{pc} (slow)	IM	TSCA/CCA	(1)	Aalias	V_{val}	A_{his} (slow)	EM	TSCA/CCA	(1)
	A_{alias}	Vval	V_{his} (slow)	IM	TSCA/CCA	(1)	Aalias	Vval	A _{alias} (slow)	EM	TSCA/CCA	(1)
	Aalias	V_{val}	Valias (slow)	IM	TSCA/CCA	(1)	Valias	Vval	V_{val} (fast)	IH	TSCA/CCA	nev
	Valias	Vval	A_{pc} (slow)	EM	TSCA/CCA	new	Valias	Vval	V_{pc} (slow)	IM	TSCA/CCA	nev
	Valias	Vval	A_{his} (slow)	EM	TSCA/CCA	new	Valias	Vval	V_{his} (slow)	IM	TSCA/CCA	nev
	Valias	Vval	A _{alias} (slow)	EM	TSCA/CCA	new	Valias	Vval	Valias (slow)	IM	TSCA/CCA	nev
	Apc	Vval	A_{cc} (fast)	EH	TEA	(2)	Vpc	Vval	A_{cc} (fast)	EH	TEA	(2)
				EH	TEA	(3)	Vpc			EH	TEA	
	Ahis	Vval	A_{cc} (fast)				Vhis	Vval	A_{cc} (fast)			nev
	Aalias	V_{val}	A_{cc} (fast)	EH	TEA	(2)	Valias	V_{val}	A_{cc} (fast)	EH	TEA	(2)
	A_{inv}	V_{val}	$V_{val} (fast)$	IH	TSCA/CCA	(1)	V_{inv}	V_{val}	V_{val} (fast)	IH	TSCA/CCA	nev
	Vval	A_{pc}	V_{val} (slow)	EM	TSCA/CCA	new	V_{val}	V_{pc}	V_{val} (slow)	IM	TSCA/CCA	nev
	Vval	Aalias	V_{val} (slow)	EM	TSCA/CCA	new	Vval	Valias	V_{val} (slow)	IM	TSCA/CCA	nev
	A_{pc}	V_{val}	V_{val} (fast)	IH	TSCA/CCA	(1)	A_{pc}	Vval	A_{pc} (slow)	EM	TSCA/CCA	(1)
	A_{pc}	V_{val}	V_{pc} (slow)	IM	TSCA/CCA	(1)	Anc	V_{val}	A_{alias} (slow)	EM	TSCA/CCA	(1)
	A_{pc}	Vval	V_{alias} (slow)	IM	TSCA/CCA	(1)	Vac	Vnat	Vval (fast)	IH	TSCA/CCA	nev
1000000	V_{pc}	Vval	A_{pc} (slow)	EM	TSCA/CCA	new	V_{pc}^{pc}	V _{val}	V_{pc} (slow)	IM	TSCA/CCA	nev
BTB	V_{pc}^{pc}	V _{val}	A_{alias} (slow)	EM	TSCA/CCA	new	V_{pc}^{pc}	V _{val}	V_{alias} (slow)	IM	TSCA/CCA	nev
(call/ret)	A	Vval	V_{val} (fast)	IH	TSCA/CCA	(1)		V _{val}	A_{pc} (slow)	EM	TSCA/CCA	(1)
	Aalias		V_{pc} (slow)	IM	TSCA/CCA	(1)	Aalias		A in (down)	EM	TSCA/CCA	(1)
	A_{alias}	V_{val}					Aalias	V_{val}	A_{alias} (slow)			
	Aalias	V _{val}	V_{alias} (slow)	IM	TSCA/CCA	(1)	Valias	Vval	$V_{val} (fast)$	IH	TSCA/CCA	nev
	Valias	V _{val}	A_{pc} (slow)	EM	TSCA/CCA	new	Valias	Vval	V_{pc} (slow)	IM	TSCA/CCA	nev
	Valias	V_{val}	A_{alias} (slow)	EM	TSCA/CCA	new	Valias	Vval	V_{alias} (slow)	IM	TSCA/CCA	nev
	A_{pc}	V_{val}	A_{cc} (fast)	EH	TEA	(2)	V_{pc}	Vval	A_{cc} (fast)	EH	TEA	(2)
	A_{alias}	V_{val}	A_{cc} (fast)	EH	TEA	(2)	Valias	V_{val}	A_{cc} (fast)	EH	TEA	(2)
1	Ainv	Vval	$V_{val} (fast)$	IH	TSCA/CCA	(1)	Vinv	Vval	V_{val} (fast)	IH	TSCA/CCA	nev
	Vval	Aalias	Vval (slow)	EM	TSCA/CCA	new	Vval	Valias	V_{val} (slow)	IM	TSCA/CCA	nev
DCT	Aalias	Vval	Vval (fast)	IH	TSCA/CCA	(1)	Aalias	Vval	Aalias (slow)	EM	TSCA/CCA	(1)
RSB		Vval	Valias (slow)	IM	TSCA/CCA	(1)	Valias	Vval	V _{val} (fast)	IH	TSCA/CCA	nev
	Aalias			EM	TSCA/CCA	new				IM	TSCA/CCA	nev
	Valias Aalias	V_{val} V_{val}	$A_{alias} (slow)$ $A_{cc} (fast)$				Valias	Vval	Valias (slow)			
			Acc (Last)	EH	TEA	(2)	Valias	Vval	A_{cc} (fast)	EH	TEA	nev

BTB: (1) Predicting Keys 1 – 3; (2) Spectre V2 [40]; (3) BHI [5].
 RSB: (1) Predicting Keys [13]; (2) Spectre V5 [42], [45].


Framework: Extensibility of Our Modeling

Case study 1: modeling of TAGE branch predictor

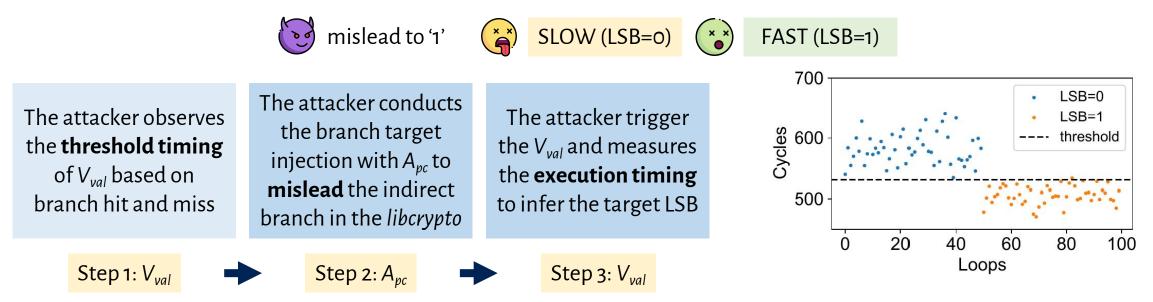
>TAGE is widely deployed in popular open-source processors

≻e.g., XiangShan

Framework: Viability of Novel Attacks

\succ Case study 2: evaluation of two novel PHT attacks

- > A V_{pc} -based attack variant and a V_{his} -based attack variant
- Transmission of random "0" and "1" bits repeated 1,000,000 times
- >Leakage of sensitive information with a substantial bandwidth on Intel processors


Number	Attack Pattern	Processor	Timing Resolution	Capacity
#10		Intel Core i5-1135G7	92 vs 108 cycles	865.7 Kbps
#10	$V_{pc} \rightarrow V_{val} \rightarrow V_{val}$	Intel Core i7-12700	69 vs 83 cycles	925.5 Kbps
#20		Intel Core i5-1135G7	91 vs 114 cycles	690.7 Kbps
#20	V _{his} →V _{val} →V _{val}	Intel Core i7-12700	67 vs 83 cycles	734.1 Kbps

Framework: Practicality of Novel Attacks

\succ Case study 3: recovery of LSB in OpenSSL with a novel BTB variant

➢ EVP_EncryptUpdate() in libcrypto library of OpenSSL 1.1.1b is vulnerable (CCS'19)➢ We demonstrate the practicality of a novel variant exploiting the same vulnerability➢ We implement the PoC of #31 ($V_{val} \rightarrow A_{pc} \rightarrow V_{val}$) to recover the LSB of the first bytes

Recovering LSB in OpenSSL on Intel Core i7-12700

Analysis: Modeling Typical Secure Designs

>Our framework is applicable to evaluating secure designs (as instances)

> We model 8 secure branch predictors and 4 secure speculation schemes

Secure BP	Remaining Ops	Reference
Lock-Based BTB	25/53	TrustCom 2014
MI6	33/53	MICRO 2019
BRB	33/53	HPCA 2019
Two-Level Encryption	22/53	TACO 2020
Noisy-XOR-BP	22/53	DAC 2021
PSC	31/53	JCST 2021
LS-BP	22/53	ASP-DAC 2022
НуВР	16/53	HPCA 2022

We conduct a comprehensive analysis of **remaining operations** in our model for each secure branch predictor

Secure Speculation	Blocked Ops	Reference	
DAWG	A _{cc} for cache (different domains)	MICRO 2018	
CSF-LFENCE	V _{val} for PHT	ASPLOS 2019	
STT	V _{val} for PHT	MICRO 2019	
InvisiSpec	A_{cc} for cache	MICRO 2018	

We select **four representative hardware-based defenses** against speculative attacks that introduce low-performance overhead

We perform a thorough analysis of **blocked operations** for each secure speculation scheme

Analysis: Overview of Secure BP Evaluation

\succ Secure branch predictor evaluation for all 156 three-step attacks

- PSC and HyBP are the most effective secure branch predictors for mitigating PHT and BTB security vulnerabilities under ideal circumstances
- > The best-performing HyBP can shield about 79% of the attack patterns
- > The worst-performing MI6 and BRB can only cover about 16% of the attack patterns

Secure BP	PHT	BTB (ind)	BTB (call)	BTB (ret)	RSB	Total
Lock-Based BTB	28/28	19/56	11/30	11/30	5/12	74/156
MI6	10/28	56/56	30/30	30/30	5/12	131/156
BRB	10/28	56/56	30/30	30/30	5/12	131/156
Two-Level Encryption	18/28	12/56	2/30	2/30	5/12	39/156
Noisy-XOR-BP	18/28	12/56	2/30	2/30	5/12	39/156
PSC (ideal)	0/28	56/56	30/30	30/30	5/12	121/156
LS-BP	18/28	12/56	2/30	2/30	5/12	39/156
НуВР	18/28	10/56	0/30	0/30	5/12	33/156

Analysis: Evaluation for Known/New Attacks

Secure branch predictor evaluation for known/new attacks

- > HyBP provides the best protection against known and newly derived attacks
- ➢Two-Level Encryption, Noisy-XOR-BP, and LS-BP have better protection coverage
- ➢Lock-Based BTB has significant omissions for newly derived attacks
- ► MI6 and BRB do not adequately protect against known and newly derived attacks

Secure BP	PHT (known)	BTB (known)	RSB (known)	PHT (new)	BTB (new)	RSB (new)
Lock-Based BTB	12/12	6/50	0/5	16/16	35/66	5/7
MI6	2/12	50/50	0/5	8/16	66/66	5/7
BRB	2/12	50/50	0/5	8/16	66/66	5/7
Two-Level Encryption	5/12	7/50	0/5	9/16	35/66	5/7
Noisy-XOR-BP	5/12	7/50	0/5	9/16	35/66	5/7
PSC (ideal)	0/12	50/50	0/5	0/16	66/66	5/7
LS-BP	5/12	7/50	0/5	9/16	35/66	5/7
НуВР	5/12	4/50	0/5	13/16	6/66	5/7

Analysis: Secure BPs vs Secure Speculation

> Evaluation of secure BPs and HW defenses against speculative attacks

 Hardware-based secure speculation can only mitigate a limited number of speculative execution attacks or only mitigate specific cache covert channels
 Secure branch predictor designs can mitigate more speculative execution attacks

Defense Strategy	Speculative Attacks (cache channel)	Speculative Attacks (other channel)	Defense Strategy	Speculative Attacks (cache channel)	Speculative Attacks (other channel)
Lock-Based BTB	12/20	12/20	MI6	17/20	17/20
BRB	17/20	17/20	Two-Level Encryption	6/20	6/20
Noisy-XOR-BP	6/20	6/20	PSC (ideal)	15/20	15/20
LS-BP	6/20	6/20	HyBP	6/20	6/20
DAWG	17/20	19/20	CSF-LFENCE	15/20	15/20
STT	15/20	15/20	InvisiSpec	15/20	19/20

Analysis: Secure BPs vs Secure Speculation

> Evaluation of secure BPs and HW defenses against speculative attacks

 Hardware-based secure speculation can only mitigate a limited number of speculative execution attacks or only mitigate specific cache covert channels
 Secure branch predictor designs can mitigate more speculative execution attacks

Secure branch predictor designs are promising solutions in mitigating branch predictor security vulnerabilities and preserving the confidentiality and integrity of computer systems!

	DKD	1//20	1//20	тио-селет спстурнон	0/20	0/20
	Noisy-XOR-BP	6/20	6/20	PSC (ideal)	15/20	15/20
	LS-BP	6/20	6/20	HyBP	6/20	6/20
ſ	DAWG	17/20	19/20	CSF-LFENCE	15/20	15/20
	STT	15/20	15/20	InvisiSpec	15/20	19/20

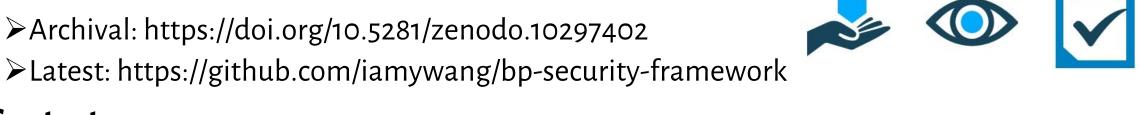
>Modeling: propose a three-step branch predictor modeling methodology

We propose a three-step modeling approach for evaluating the security properties of branch predictors at the microarchitecture design stage. Our technique abstractly characterizes 19 branch predictor states and 53 operations of the attacker and victim that could affect these states.

> Framework: derive 156 effective attack patterns with 89 novel variants

We develop a comprehensive and automated evaluation framework based on the proposed model that leverages symbolic execution to analyze all potential three-step combinations, yielding 156 valid attack patterns against branch predictors, with 89 novel attacks never discovered.

>Analysis: conduct security analysis of exisiting HW-based secure designs


We apply our security analysis framework to 8 existing secure branch predictor designs and four typical hardware alleviations against speculative execution attacks, and the results show that secure branch predictors are promising solutions for enhancing the security of the computer system.

http://csccl.whu.edu.cn

CSCCL (CryptoChip Lab) at Wuhan University

Archival: https://doi.org/10.5281/zenodo.10297402

wangquancheng@whu.edu.cn

≻Artifact

≻Contact

