
Memory Safety Discussion
Quancheng Wang

2023.3.27

1 Memory Safety Violation

Content

• Memory Safety Violation
• ROP/JOP/COP Attacks
• Questions

Memory Safety Violation: Architectural View

• Temporal violation: a violation caused by using a pointer whose
referent has been deallocated (e.g. with free()) and is no longer a
valid object.

• Spatial violation: a violation caused by dereferencing a pointer that
refers to an address outside the bounds of its “referent”.

[1] Simpson, M. S., & Barua, R. K. (2013). MemSafe: ensuring the spatial and temporal memory safety of C at runtime. Software: Practice and Experience, 43(1), 93-128.

Example of Temporal Violation

• Use-after-free
• Pointer p0 should not point to address 0xf22d2a0

Example of Spatial Violation

• Buffer overflow
• access out-of-bound index of array num[]
• but no seg fault

Branch Instructions

• JMP address
• CALL address

• PUSH %EIP
• JMP [address]

• RET
• POP %EIP
• JMP [%EIP]

Software Stack

• Return address overflow:
• Overflow vars
• Overflow old %ebp
• Overflow return address

ROP Attack

• Find ROP gadgets
• Overflow return address
• Execute malicious instructions

[1] https://github.com/JonathanSalwan/ROPgadget

ROP Attack

ROP Attack

• Assume the attacker want to execute execve("/bin/sh", NULL, NULL);
• Input:

• (1) offset between data and return address;
• (2) address of “pop eax/ebx/ecx/edx; ret”;
• (3) target data of register eax/ebx/ecx/edx;
• loop (2) (3);
• (4) address of “0x80”;

JOP/COP Attack

• Assume the attacker want to execute execve("/bin/sh", NULL, NULL);
• Input:

• (1) offset between data and jump address;
• (2) address of “pop eax; jmp/call address of “pop ebx; …””;
• (3) target data of register eax, …;
• loop (2) (3);
• (4) address of “jmp/call address of 0x80”;

Questions

• 1. Is buffer overflow a bug of PL/compiler?
• 2. If allocating space is not a visible parameter at the ISA level, is it

not possible to eliminate buffer overflows at HW level, but only to
mitigate their subsequent exploitation?

• 3. Even if it is impossible to prevent buffer overflow, is it sufficient to
protect against ROP attack if we can do the following: (1) protect the
return address from being modified; (2) the instruction with the
wrong address cannot be executed.

Questions

• 4. I s i t suff ic ient i f we can only
guarantee that the old %ebp and
return address on the stack (all stack
frames) are not modified?

2 HW Defenses for ROP/JOP/COP
Attacks

Content

• Intel CET (Control-Flow Enforcement Technology)
• ARM PAC (Pointer Authentication)

Intel CET

• Shadow Stack (for ROP attacks)
• Indirect Branch Tracking (for JOP and COP attacks)

Shadow Stack: HW + OS

[1] https://cloud.tencent.com/developer/article/1955836
[2] https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
[3] https://v1nke.github.io/2022/02/24/Intel%20CET%E7%BC%93%E8%A7%A3%E6%9C%BA%E5%88%B6%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90/

Indirect Branch Tracking: HW + Compiler

[1] https://cloud.tencent.com/developer/article/1955836
[2] https://v1nke.github.io/2022/02/24/Intel%20CET%E7%BC%93%E8%A7%A3%E6%9C%BA%E5%88%B6%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90/

Indirect Branch Tracking: HW + Compiler

[1] https://cloud.tencent.com/developer/article/1955836
[2] https://v1nke.github.io/2022/02/24/Intel%20CET%E7%BC%93%E8%A7%A3%E6%9C%BA%E5%88%B6%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90/

Bonus: Transient Execution Attacks

• The attacker trains indirect branch predictors such that the desired
victim indirect branch goes to the attacker desired location.

• Fault/Execution can result in transient execution.
• However, no new transient execution attack!!

[1] https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

ret2spec

• Instructions at the target of a RET instruction will not execute, even
speculatively, if the RET addresses (either from normal stack or
shadow stack) are speculative-only or do not match.

• Speculative execution only occurs when:
• return address on stack == return address on RSB

• Never returns to malicious address

[1] https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Branch Target Injection

• When the CET tracker is in the WAIT_FOR_ENDBRANCH state,
instruction execution will be limited or blocked, even speculatively, if
the next instruction is not an ENDBRANCH.

• Speculative execution only occurs when:
• next instruction is ENDBRANCH (like lfence for memory accesses)

• Never jumps to malicious address

[1] https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

ARM PAC

• The full 64-bit address range is currently not fully utilized, so there
are some spare bits that can be used to embed security information
for validating the pointer.

[1] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
[2] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).

Stack Protection: Canary

[1] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

Stack Protection: ARM PAC

[1] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

PACMAN Attack: PAC Authentication Fail

[1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-a-architecture-2016-additions

PACMAN Attack: Side Channel

[1] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).
[2] https://developer.arm.com/documentation/ka005109/1-0?lang=en

PACMAN Attack: Side Channel

[1] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).
[2] https://developer.arm.com/documentation/ka005109/1-0?lang=en

PACMAN Attack: Mitigation

[1] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).
[2] https://developer.arm.com/documentation/ka005109/1-0?lang=en

Comparison

INTEL CET ARM PAC

Extra memory allocation √

New registers √ √

New instructions √ √

New HW encryption engine √

Compiler modification √ √

Kernel modification √

3 Papers

Papers
No Title Conf Rank Type

1 No-FAT: Architectural Support for Low Overhead Memory Safety Checks ISCA A HW&SW Co-design Defense
2 ZeRØ: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks ISCA A HW&SW Co-design Defense
3 SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA A HW&SW Co-design Defense
4 In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection ASPLOS A HW&SW Co-design Defense
5 ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS A HW&SW Co-design Defense
6 Finding Unstable Code via Compiler-driven Differential Testing ASPLOS A SW Detection
7 Decker: Attack Surface Reduction via On-demand Code Mapping ASPLOS A SW Defense
8 SHORE: Hardware/Software Method for Memory Safety Acceleration on RISC-V DAC A HW&SW Co-design Accelerator
9 Towards Reliable Spatial Memory Safety for Embedded Software by Combining Checked C with Concolic Testing DAC A SW Detection

10 HWST128: complete memory safety accelerator on RISC-V with metadata compression DAC A HW&SW Co-design Accelerator
11 RegVault: hardware assisted selective data randomization for operating system kernels DAC A HW&SW Co-design Defense
12 Hardening Binaries against More Memory Errors EuroSys A SW Detection
13 PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages (Best Paper Award) EuroSys A SW Defense
14 Goshawk: Hunting Memory Corruptions via Structure-Aware and Object-Centric Memory Operation Synopsis S&P A SW Detection
15 VIP: Safeguard Value Invariant Property for Thwarting Critical Memory Corruption Attacks CCS A HW&SW Co-design Defense
16 PACMem: Enforcing Spatial and Temporal Memory Safety via ARM Pointer Authentication CCS A SW Detection
17 PTAuth: Temporal Memory Safety via Robust Points-to Authentication USENIX A SW Detection
18 In-Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Authentication USENIX A SW Defense
19 Tightly Seal Your Sensitive Pointers with PACTight USENIX A SW Defense
20 Holistic Control-Flow Protection on Real-Time Embedded Systems with Kage USENIX A SW Defense
21 Detecting Kernel Memory Leaks in Specialized Modules with Ownership Reasoning NDSS A SW Detection
22 The Taming of the Stack: Isolating Stack Data from Memory Errors NDSS A SW Defense
23 Rudra: Finding Memory Safety Bugs in Rust at the Ecosystem Scale (Distinguished Artifact Award) SOSP A SW Detection
24 RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID B SW Attack

Q&A

